RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

SURFACE ACOUSTIC WAVES IN LAYER - SUBSTRATE STRUCTURES OF ARBITRARY ANISOTROPY

PII
S0023476125040114-1
DOI
10.31857/S0023476125040114
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
626-636
Abstract
The existence of surface acoustic waves in a semi-infinite substrate with a solid layer is theoretically investigated. The substrate and the layer are not piezoelectrics, but can belong to any class of crystallographic symmetry. By presenting the dispersion equation as a condition on the substrate and layer impedance matrices, it is possible to determine, using the properties of impedances, the maximum allowable number of surface waves depending on the type of contact and the ratio between the velocities of the bulk waves in the substrate and the layer materials. In addition, a dispersion equation is derived for the symmetrical orientation of an orthorhombic substrate with a deposited monoatomic layer and the possibility of a purely flexure surface acoustic wave in the case of a very hard surface layer, for example, a monolayer of graphene on a soft polymer substrate, is shown.
Keywords
Date of publication
24.04.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Бреховских Л.М., Годин О.А. Акустика слоистых сред. М.: Наука, 1989. 411 с.
  2. 2. Novoselov K.S., Jiang D., Schedin F., Geim A.K. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 10451. https://doi.org/10.1073/pnas.0502848102
  3. 3. Geim A.K., Novoselov K.S. // Nat. Mater. 2007. V. 6. P. 183. https://doi.org/10.1038/nmat1849
  4. 4. Buravets V., Hosek F., Burtsev V. et al. // Inorg. Chem. 2024. V. 63. P. 8215. https://doi.org/10.1021/acs.inorgchem.4c00475
  5. 5. Booth T.J., Blake P., Nair R. et al. // Nano Lett. 2008. V. 8. P. 2442. https://doi.org/10.1021/nl801412y
  6. 6. Ye Ch., Peng Q. // Crystals. 2023. V. 13. P. 12. https://doi.org/10.3390/cryst13010012
  7. 7. https://en.wikipedia.org/wiki/Transition_metal_dichalcogenide_monolayers
  8. 8. Lee C., Wei X., Kysar J.W., Hone J. // Science. 2008. V. 321. P. 385. https://doi.org/10.1126/science.1157996
  9. 9. Akinwande D., Brennan Ch., Bunch J. et al. // Extreme Mech. Lett. 2017. V. 13. P. 42. https://doi.org/10.1016/j.eml.2017.01.008
  10. 10. Roldán R., Chirolli L., Prada E. et al. // Chem. Soc. Rev. 2017. V. 46. P. 4387. https://doi.org/10.1039/C7CS00210F
  11. 11. Андреев А.Ф., Косевич Ю.А. // ЖЭТФ. 1981. Т. 81. С. 1435. http://jetp.ras.ru/cgi-bin/dn/e_054_04_0761.pdf
  12. 12. Косевич Ю.А., Сыркин Е.С. // ЖЭТФ. 1985. Т. 89. С. 2221. http://www.jetp.ras.ru/cgi-bin/dn/e_062_06_1282.pdf
  13. 13. Kosevich Yu.A., Syrkin E.S. // Phys. Lett. A. 1987. V. 122. P. 178. https://doi.org/10.1016/0375-9601 (87)90801-2
  14. 14. Косевич Ю.А., Сыркин Е.С. // Кристаллография. 1988. Т. 33. С. 1339.
  15. 15. Kosevich Yu.A., Syrkin E.S. // Phys. Lett. A. 1989. V. 135. P. 298. https://doi.org/10.1016/0375-9601 (89)90118-7
  16. 16. Kosevich Yu.A., Syrkin E.S. // Low Temp. Phys. 1994. V. 20. P. 517. https://doi.org/10.1063/10.0033673
  17. 17. Kosevich Yu.A. // Prog. Surf. Sci. 1997. V. 55. P. 1. https://doi.org/10.1016/S0079-6816 (97)00018-X
  18. 18. Kosevich Yu.A., Kistanov A.A., Strelnikov I.A. // Lett. Mater. 2018. V. 8. P. 278. https://doi.org/10.22226/2410-3535-2018-3-278-281
  19. 19. Kosevich Yu.A. // Phys. Rev. B. 2022. V. 105. P. L121408. https://doi.org/10.1103/PhysRevB.105.L121408
  20. 20. Лехницкий С.Г. Анизотропные пластинки. М.: Наука, 1957. 463 с.
  21. 21. Ландау Л.Д., Лифшиц Е.М., Косевич А.М., Питаевский Л.П. Теоретическая физика. Теория упругости. 4-е изд., испр. М.: Наука, 1987. 248 с.
  22. 22. Androulidakis Ch., Koukaras E., Frank O. et al. // Sci. Rep. 2014. V. 4. P. 5271. https://doi.org/10.1038/srep05271
  23. 23. Ingebrigtsen K.A., Tonning A. // Phys. Rev. 1969. V. 184. P. 942. https://doi.org/10.1103/PhysRev.184.942
  24. 24. Lothe J., Barnett D.M. // J. Appl. Phys. 1976. V. 47. P. 428. https://doi.org/10.1063/1.322665
  25. 25. Lothe J., Barnett D.M. // J. Appl. Phys. 1976. V. 47. P. 1799. https://doi.org/10.1063/1.322895
  26. 26. Lothe J., Barnett D.M. // Phys. Norvegica. 1977. V. 8. P. 239.
  27. 27. Lothe J., Barnett D.M. // Proc. R. Soc. Lond. A. 1985. V. 402. P. 135. https://doi.org/10.1098/rspa.1985.0111
  28. 28. Barnett D.M., Lothe J., Gavazza S.D., Musgrave M.J.P. // Proc. R. Soc. Lond. A. 1985. V. 402. № 1822. https://doi.org/10.1098/rspa.1985.0112
  29. 29. Peach R.C. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2001. V. 48. P. 1308. https://doi.org/10.1109/58.949740
  30. 30. Barnett D.M., Gavazza S.D., Lothe J. // Proc. R. Soc. London. A. 1988. V. 415. P. 389. https://doi.org/10.1098/rspa.1988.0020
  31. 31. Abbudi M., Barnett D.M. // Proc. R. Soc. London. A. 1990. V. 429. P. 587. https://doi.org/10.1098/rspa.1990.0075
  32. 32. Alshits V.I., Darinskii A.N., Lothe J. // Wave Motion. 1992. V. 16. P. 265. https://doi.org/10.1016/0165-2125 (92)90033-X
  33. 33. Alshits V.I., Barnett D.M., Darinskii A.N., Lothe J. // Wave Motion. 1994. V. 20. P. 233. https://doi.org/10.1016/0165-2125 (94)90049-3
  34. 34. Darinskii A.N., Shuvalov A.L. // Phys. Rev. B. 2018. V. 98. P. 024309. https://doi.org/10.1103/PhysRevB.98.024309
  35. 35. Darinskii A.N., Shuvalov A.L. // Phys. Rev. B. 2019. V. 99. P. 174305. https://doi.org/10.1103/PhysRevB.99.174305
  36. 36. Darinskii A.N., Shuvalov A.L. // Phys. Rev. B. 2019. V. 100. P. 184303. https://doi.org/10.1103/PhysRevB.100.184303
  37. 37. Darinskii A.N., Shuvalov A.L. // Proc. R. Soc. A. 2019. V. 475. P. 20190371. https://doi.org/10.1098/rspa.2019.0371
  38. 38. Darinskii A.N., Shuvalov A.L. // Ultrasonics. 2021. V. 109. P. 106237. https://doi.org/10.1016/j.ultras.2020.106237
  39. 39. Бирюков С.В., Гуляев Ю.В., Крылов В.В., Плесский В.П. Поверхностные акустические волны в неоднородных средах. М.: Наука, 1991. 414 с.
  40. 40. Stroh A.N. // Philos. Mag. 1958. V. 41. P. 625. https://doi.org/10.1080/14786435808565804
  41. 41. Anderson P.M., Hirth J.P., Lothe J. Theory of Dislocations. 3rd ed. Cambridge: Cambridge University Press, 2017. 699 p.
  42. 42. Elastic strain fields and dislocation mobility / Eds. Indenbom V.L., Lothe J. Amsterdam: North-Holland, 1992. 778 p.
  43. 43. Ting T.C.T. Anisotropic Elasticity: Theory and Applications. New York: Oxford University Press, 1996. 592 р.
  44. 44. Chadwick P., Smith G.D. // Adv. Appl. Mech. 1977. V. 17. P. 303. https://doi.org/10.1016/S0065-2156 (08)70223-0
  45. 45. Tanuma K. // J. Elasticity. 2007. V. 89. P. 5. https://doi.org/10.1007/s10659-007-9117-1
  46. 46. Shuvalov A.L. // Proc. R. Soc. London. A. 2000. V. 456. P. 2197. https://doi.org/10.1098/rspa.2000.0609
  47. 47. Hwu Ch. Anisotropic Elastic Plates. New York: Springer, 2010. 673 p.
  48. 48. Rokhlin S.I., Chimenti D.E., Nagy P.B. Physical Ultrasonics of Composites. Oxford: Oxford University Press, Inc. 2011. 378 p.
  49. 49. Альшиц В.И., Любимов В.Н., Шувалов А.Л. // ЖЭТФ. 1994. Т. 106. С. 828.
  50. 50. Shuvalov A.L., Every A.G. // Wave Motion. 2002. V. 36. P. 257. https://doi.org/10.1016/S0165-2125 (02)00013-6
  51. 51. Shuvalov A.L., Every A.G. // Ultrasonics. 2002. V. 40. P. 939. https://doi.org/10.1016/S0041-624X (02)00235-4
  52. 52. Politano A., Chiarello G. // Nano Res. 2015. V. 8. P. 1847. https://doi.org/10.1007/s12274-014-0691-9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library