RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

EVOLUTION OF THE MAGNETIC DOMAIN STRUCTURE IN IRON BORATE FeBO SINGLE CRYSTALS IN EXTERNAL FIELDS, STUDIED BY X-RAY DIFFRACTION AND MAGNETO-OPTICAL TECHNIQUES

PII
S0023476125040134-1
DOI
10.31857/S0023476125040134
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
643-649
Abstract
An X-ray diffraction technique using a synchrotron radiation source has been developed and implemented to study the evolution processes of magnetic domain structure in external fields. High-quality single crystals of iron borate FeBO were chosen as model objects. A series of X-ray and magneto-optical experiments were performed to investigate the evolution of the magnetic domain structure in weak external magnetic fields. It has been established that the movement of domain walls leads to a stepwise broadening of the diffraction reflection curves of FeBO crystals. It is demonstrated that X-ray diffraction studies of the magnetic domain structure can be useful for characterizing magnetic materials in which direct observation of domains by magneto-optical and electron-microscopic methods is difficult.
Keywords
Date of publication
24.04.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Weiss P. // J. Phys. Radium. 1907. V. 6. P. 661.
  2. 2. В1осh F. // Z. Phys. 1932. V. 74. P. 295.
  3. 3. Landau L.D., Lifshitz E.M. Course of theoretical physics. Elsevier, 2013. 562 p.
  4. 4. Néel L. // Cahiers de physique. 1944. V. 25. P. 21.
  5. 5. Вонсовский С.В. Магнетизм. М.: Наука, 1971. 1032 c.
  6. 6. Hubert A., Shafer R. Magnetic domains. The Analysis of Magnetic Microstructures. Springer, 2009. 685 p.
  7. 7. Logunov M.V., Safonov S.S., Fedorov A.S. et al. // Phys. Rev. Appl. 2021. V. 15. P. 064024. https://doi.org/10.1103/PhysRevApplied.15.064024
  8. 8. Snegirev N., Kulikov A., Lyubutin I. et al. // JETP Lett. 2024. V. 119. № 6. P. 464.
  9. 9. Snegirev N., Kulikov A., Lyubutin I.S. et al. // Cryst. Growth Des. 2023. V. 23. P. 5883. https://doi.org/10.1134/S0021364024600484
  10. 10. Lyubutin I.S., Snegirev N.I., Chuev M.A. et al. // J. Alloys Compd. 2022. V. 906. P. 164348. https://doi.org/10.1016/j.jallcom.2022.164348
  11. 11. Snegirev N., Lyubutin I., Kulikov A. et al. // J. Alloys Compd. 2022. V. 889. P. 161702. https://doi.org/10.1016/j.jallcom.2021.161702
  12. 12. Seavey M.H. // Solid State Commun. 1972. V. 10. P. 219. https://doi.org/10.1016/0038-1098 (72)90385-7
  13. 13. Joubert J.C., Shirk T., White W.B., Roy R. // Mater. Res. Bull. 1968. V. 3. P. 671. https://doi.org/10.1016/0025-5408 (68)90116-5
  14. 14. Pernet M., Elmale D., Joubert J.C. // Solid State Commun. 1970. V. 8. P. 1583.
  15. 15. Дорошев В.Д., Kовтун Н.М., Лукин С.Н. и др. // Письма в ЖЭТФ. 1979. Т. 29. № 5. С. 286.
  16. 16. Nemec P., Fiebig M., Kampfrath T., Kimel A.V. // Nature Phys. 2019. V. 14. P. 229. https://doi.org/10.48550/arXiv.1705.10600
  17. 17. Xionga D., Jianga Y., Shi K. et al. // Fundamental Res. 2022. V. 2. P. 522. https://doi.org/10.1016/j.fmre.2022.03.016
  18. 18. Smirnova E.S., Snegirev N.I., Lyubutin I.S. et al. // Acta Cryst. B. 2020. V. 76. № 6. P. 1100. https://doi.org/10.1107/S2052520620014171
  19. 19. Yagupov S., Strugatsky M., Seleznyova K. et al. // Cryst. Growth Des. 2018. V. 18. P. 7435. https://doi.org/10.1021/acs.cgd.8b01128
  20. 20. Bowen D.K., Tanner B.K. High resolution X-ray diffractometry and topography Title. London: CRC press, 1998. 251 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library