- PII
- S30345510S0023476125050018-1
- DOI
- 10.7868/S3034551025050018
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 5
- Pages
- 715-721
- Abstract
- We present the first results of a new experimental method for phase-contrast microscopy of microobjects based on synchrotron radiation and a nanofocusing lens in a conical geometry. In the experiment, a secondary radiation source is formed at the lens focus, located at a short distance from the microobject, enabling the acquisition of its magnified image. Under near-field conditions, the structure of the microobject can be relatively easily retrieved from the experimental image using the transport-of-intensity equation. The experiment was conducted at the KISI-Kurchatov synchrotron radiation source. A model weakly absorbing microobject, namely a commercially available carbon fiber of grade VMN-4, was used. The fiber dimensions and structural features were obtained with submicron spatial resolution, in agreement with the electron microscopy results.
- Keywords
- Date of publication
- 21.07.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 34
References
- 1. Ковальчук М.В., Благов А.Е., Нарайкин О.С. и др. // Кристаллография. 2022. Т. 67. № 5. С. 726. https://doi.org/10.31857/S0023476122050071
- 2. Snigirev A., Snigireva I., Kohn V. et al. // Rev. Sci. Instrum. 1995. V. 66 (12). P. 5486. https://doi.org/10.1063/1.1146073
- 3. Аргунова Т.С., Кон В.Г. // Успехи физ. наук. 2019. Т. 189. № 6. С. 643.
- 4. https://doi.org/10.3367/UFNr.2018.06.038371 Кон В.Г. // Кристаллография. 2022. Т. 67. № 2. С. 892. https://doi.org/10.31857/S0023476122060133
- 5. Kohn V.G., Argunova T.S. // Phys. Status Solidi. B. 2022. V. 259. № 4. P. 2100651. https://doi.org/10.1002/pssb.202100651
- 6. Фоломешкин М.С., Кон В.Г., Серёгин А.Ю. и др. // Кристаллография. 2024. Т. 69. № 6. С. 919. https://doi.org/10.31857/S0023476124060017
- 7. Yunkin V., Grigoriev M.V., Kuznetsov S. et al. // Proc. SPIE. 2004. V. 5539. P. 226. https://doi.org/10.1117/12.563253
- 8. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
- 9. Teague M.R. // J. Opt. Soc. Am. 1983. V. 73. № 11. P. 1434. https://doi.org/10.1364/JOSA.73.001434
- 10. Paganin D., Mayo S.C., Gureyev T.E. et al. // J. Microscopy. 2002. V. 206. № 1. P. 33. https://doi.org/10.1046/j.1365-2818.2002.01010.x Tomography
- 11. Burvall A., Lundström U., Takman P.A.C. et al. // Opt. Express. 2011. V. 19. № 11. P. 10359. https://doi.org/10.1364/OE.19.010359
- 12. Krenkel M., Bartels M., Salditt T. // Opt. Express. 2013. V. 21. № 2. P. 2220. https://doi.org/10.1364/OE.21.002220
- 13. Paganin D.M. Coherent X-Ray Optics. New York: Oxford University Press, 2006. 411 p.
- 14. Фоломешкин М.С., Кон В.Г., Серёгин А.Ю. и др. // Кристаллография. 2023. Т. 68. № 1. С. 5. https://doi.org/10.31857/S0023476123010071
- 15. Кон В.Г. // Письма в ЖЭТФ. 2002. Т. 76. С. 701.
- 16. Кон В.Г. // ЖЭТФ. 2003. Т. 124. С. 224.
- 17. Kohn V.G. // J. Synchrotron Rad. 2018. V. 25. P. 1634. https://doi.org/10.1107/S1600577518012675
- 18. Kohn V.G., Folomeshkin M.S. // J. Synchrotron Rad. 2021. V. 28. P. 419. https://doi.org/10.1107/S1600577521001345
- 19. Kohn V.G. // J. Synchrotron Rad. 2022. V. 29. P. 615. https://doi.org/10.1107/S1600577522001345
- 20. Кон В.Г. 2024. https://xray-optics.ucoz.ru/XR/xrwp.htm
- 21. Кон В.Г. 2024. https://kohnvict.ucoz.ru/jsp/1-crlpar.htm
- 22. Кон В.Г., Просеков П.А., Серегин А.Ю. и др. // Кристаллография. 2019. Т. 64. № 1. С. 29. https://doi.org/10.1134/S0023476119010144
- 23. Virgil'ev Yu.S., Kalyagina I.P. // Inorgan. Mater. 2004. V. 40. Suppl. 1. P. S33. https://doi.org/10.1023/B:INMA.0000036327.90241.5a
- 24. Sorokovikov M.N., Zverev D.A., Barannikov A.A. et al. // Nanobiotechnology Reports. 2023. V. 1. Suppl. 1. P. S210. https://doi.org/10.1134/S2635167623601183