RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

DEFECTS INITIATING FATIGUE FAULTS IN GRANULAR ALLOY EP741NP (PART II)

PII
S30345510S0023476125050022-1
DOI
10.7868/S3034551025050022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
722-731
Abstract
Serial section focused ion beam tomography was performed for a three-dimensional reconstruction of the microstructure of defects associated with the formation of fatigue cracks in samples destroyed during fatigue tests. The geometric parameters of defects containing Hf, Nb, Ti, Al, and Ni identified during 3D reconstruction were determined. The morphology of individual particles is represented by a set of shapes that form flat (carpet-like) conglomerates up to tens of microns in size, which cannot be detected by non-destructive testing methods. The revealed morphological features make it possible to propose a set of measures to increase the service life of parts made of granulated heat-resistant nickel alloy EP741NP, which is an important practical result of the study.
Keywords
Date of publication
22.06.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Павлов И.С., Артамонов М.А., Артемов В.В. и др. // Кристаллография. 2024. Т. 69. № 6. С. 927. https://doi.org/10.31857/S0023476124060027
  2. 2. Волков А.М., Карашаев М.М., Летников М.Н. и др. // Технология металлов. 2019. № 1. С. 2. https://doi.org/10.31044/1684-2499-2019-1-0-2-8
  3. 3. Гарибов Г.С., Кошелев В.Я., Шорошев Ю.Г. и др. // Заготовительные производства в машиностроении. 2010. № 1. С. 45.
  4. 4. Belan J. // Mater. Today Proc. 2016. V. 3. P. 936. https://doi.org/10.1016/j.matpr.2016.03.024
  5. 5. Ida S., Yamagata R., Nakashima H. et al. // Metals (Basel). 2022. V. 12. P. 1817. https://doi.org/10.3390/met12111817
  6. 6. Zhao S., Xie X., Smith G.D. et al. // Mater. Sci. Eng. A. 2003. V. 355. P. 96. https://doi.org/10.1016/S0921-5093 (03)00051-0
  7. 7. Симс Ч.Т., Норман С.С., Уильям С.Х. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Т. 1. М.: Металлургия, 1995. 384 с.
  8. 8. Трунькин И.Н., Артамонов М.А., Овчаров А.В. и др. // Кристаллография. 2019. Т. 64. С. 539. https://doi.org/10.1134/S002347611904026X
  9. 9. Sasaki S., Fujino K., Takéuchi Y. // Proc. Jpn Acad. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
  10. 10. Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  11. 11. Peng Y., Huang G., Long L. et al. // Calphad. 2020. V. 70. P. 101769. https://doi.org/10.1016/j.calphad.2020.101769
  12. 12. Johnson B., Jones J.L. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier, 2019. 570 p. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
  13. 13. Taylor J.R., Dinsdale A.T., Hilleit M. et al. // Calphad. 1992. V. 16. P. 173. https://doi.org/10.1016/0364-5916 (92)90005-I
  14. 14. Alper A.M., McNally R.N., Ribbe P.H. et al. // J. Am. Ceram. Soc. 1962. V. 45. P. 263. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x
  15. 15. Davydov A., Kattner U.R. // J. Phase Equilibria. 1999. V. 20. P. 5. https://doi.org/10.1361/105497199770335893
  16. 16. Chen M., Hallstedt B., Gauckler L.J. // J. Phase Equilibria. 2003. V. 24. P. 212. https://doi.org/10.1361/105497103770330514
  17. 17. Murray J.L. // Bull. Alloy Phase Diagrams. 1986. V. 7. P. 156. https://doi.org/10.1007/BF02881555
  18. 18. Pérez R.J., Massih A.R. // J. Nucl. Mater. 2007. V. 360. P. 242. https://doi.org/10.1016/j.jnucmat.2006.10.008
  19. 19. Okamoto H. // J. Phase Equilibria Diffus. 2011. V. 32. P. 473. https://doi.org/10.1007/s11669-011-9935-5
  20. 20. He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
  21. 21. Nagajyothi G., Raghuveera E. // Int. J. Adv. Res. Electron. Commun. Eng. 2016. V. 5. P. 2362.
  22. 22. Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
  23. 23. Бендат Дж., Пирсол А. Применение корреляционного и спектрального анализа. Пер. с англ. М.: Мир, 1983, 312 с.
  24. 24. Land E.W., McMann J.J. // J. Opt. Soc. Am. 1971. V. 61. № 1. P. 1. https://doi.org/10.1364/JOSA.61.000001
  25. 25. Jobson D.J., Rahman Z., Wodell G.A. // IEEE Trans. Image Process. 1997. V. 6. № 7. P. 965. https://doi.org/10.1109/83.597272
  26. 26. Rahman Z., Jobson D.J., Woodel G.A. // J. Electron. Imaging. 2004. V. 13. № 1. P. 100. https://doi.org/10.1117/1.1636183
  27. 27. Гонзалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
  28. 28. Limaye A. // SPIE, San Diego. 2012. V. 8506
  29. 29. Hu D., Limaye A., Lu J. // R. Soc. Open Sci. 2020. https://doi.org/10.1098/rsos.201033
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library