RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Studying the X-Ray Absorption Fine Structure Spectra of a Protein Monolayer on Liquids. The Possibilities of Multi-Pass Technique

PII
S30345510S0023476125050103-1
DOI
10.7868/S3034551025050103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
800-809
Abstract
For the first time, the extended fine structure of the absorption spectra for a protein monolayer on a liquid surface has been measured. We used as a test object human serum albumin treated with zinc chloride solution at a critically low concentration (3.6×10 M), which is comparable to the zinc concentration in blood serum. A multi-pass technique for detecting fluorescence radiation under total external reflection conditions was applied. The temporal stability of the Zn K-edge absorption spectra was examined using weighted regression analysis. It is shown that the error of the oscillating part of the total spectrum did not exceed 1%, which allowed to determine the radius of the first coordination sphere with an accuracy of ±0.01 Å.
Keywords
Date of publication
30.06.2025
Year of publication
2025
Number of purchasers
0
Views
35

References

  1. 1. Mara M.W., Hardt R.G.H., Reinhard M.E. et al. // Science. 2017. V. 356. P. 1276. https://doi.org/10.1126/science.aam6203
  2. 2. Boffi F., Ascone I., Della Longa S. et al. // Eur. Biophys. J. 2003. V. 32. Р. 329. https://doi.org/10.1007/s00249-003-0283-1
  3. 3. Wang C., Zhang R., Wei X. et al. // Adv. Immunol. 2020. V. 145. P. 187. https://doi.org/10.1016/bs.ai.2019.11.007
  4. 4. Blindauer C.A., Harvey I., Bunyan K.E. et al. // J. Biol. Chem. 2009. V. 284. P. 23116. https://doi.org/10.1074/jbc.M109.003459
  5. 5. Handing K.B., Shabalin I.G., Kassaar O. et al. // Chem. Sci. 2016. V. 7. P. 6635. https://doi.org/10.1039/c6sc02267g
  6. 6. Al-Harthi S., Chandra K., Jaremko L. // Front. Chem. 2022. V. 10. P. 942585. https://doi.org/10.3389/fchem.2022.942585
  7. 7. Ankudinov A., Ravel B. // Phys. Rev B. 1998. V. 58. P. 7565. https://doi.org/10.1103/PhysRevB.58.7565
  8. 8. Hedin L., Lundqvist B. // J. Phys. C. 1971. V. 4. P. 2064. https://doi.org/10.1088/0022-3719/4/14/022
  9. 9. Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 96. https://doi.org/10.1107/S0909049500016290
  10. 10. Sugio S., Kashima A., Mochizuki S. et al. // Protein Eng. 1999. V. 12. P. 439. https://doi.org/10.1093/protein/12.6.439
  11. 11. Рогачев А.В. Развитие поверхностно-чувствительных рентгеновских методов для нанодиагностики биоорганических слоев на жидкости: Дис. … канд. физ.-мат. наук. М.: НИЦ КИ, 2022. 198 с.
  12. 12. Klockenkämper R., Von Bohlen A. Total-reflection X-ray fluorescence analysis and related methods. John Wiley and Sons, 2015. 552 p.
  13. 13. Benjamini Y., Hochberg Y. // J. R. Stat. Soc. B. 1995. V. 57. P. 289. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  14. 14. Altman D.G., Bland J.M. // BMJ. 2005. V. 331. P. 903. https://doi.org/10.1136/bmj.331.7521.903
  15. 15. Yalovega G.E., Kremennaya M.A. // Crystallography Reports. 2020. V. 65. P. 813. https://doi.org/10.1134/S1063774520060395
  16. 16. Novikova N.N., Kovalchuk M.V., Yurieva E.A. et al. // J. Phys. Chem. B. 2019. V. 123. P. 8370. https://doi.org/10.1021/acs.jpcb.9b06571
  17. 17. Smolentsev G., Feiters M.C., Soldatov A.V. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 575. P. 168. https://doi.org/10.1016/j.nima.2007.01.059
  18. 18. Joly Y. // Phys. Rev. 2001. V. 63. P. 125120. https://doi.org/10.1103/physrevb.63.125120
  19. 19. Лысенко В.Ю., Кременная М.А., Яловега Г.Э. // Кристаллография. 2023. Т. 68. С. 228. https://doi.org/10.31857/S002347612302011X
  20. 20. Chen W.T., Liao Y.H., Yu H.M. et al. // J. Biol. Chem. 2011. V. 286. P. 9646. https://doi.org/10.1074/jbc.M110.177246
  21. 21. Zahid M., Chen N., Liu D. et al. // Chem. Phys. Lett. 2024. V. 854. P. 141559. https://doi.org/10.1016/j.cplett.2024.141559
  22. 22. Roy A., Tiwari S., Karmakar S. et al. // Int. J. Biol. Macromol. 2019. V. 123. P. 409. https://doi.org/10.1016/j.ijbiomac.2018.11.120
  23. 23. Maciazek-Jurczyk M., Janas K., Pozycka J. et al. // Molecules. 2020. V. 25. P. 618. https://doi.org/10.3390/molecules25030618
  24. 24. Хромова В.С., Мышкин А.Е. // Журн. общей химии. 2002. Т. 72. С. 1645.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library