RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Preparation of entropy-stabilized fluoride phases of fluoroite structure by coprecipitation from aqueous solutions

PII
S30345510S0023476125050121-1
DOI
10.7868/S3034551025050121
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
817-823
Abstract
Using the method of co-precipitation from aqueous solutions of nitrates, nano-sized polysubstituted solid solutions containing from 3 to 8 di- and trivalent cations in different quantitative ratios, with the general formula MRF, where M = Ca, Sr, Ba, Pb, R = La, Gd, Dy, Yb, n = 3 and 4, m = 0, 1, 2 and 4 and x varies from ~0.07 to ~0.3 for different cation compositions, were obtained. All of them retain the fluorite structure (structural type CaF, space group Fm3m). The possibilities of precipitation of mixed solid solutions in different combinations of cations and using different fluorinating agents are considered. It is shown that the obtained solid solutions are medium- and high-entropy phases.
Keywords
Date of publication
12.05.2025
Year of publication
2025
Number of purchasers
0
Views
33

References

  1. 1. Mouchovski J.T., Temelkov K.A., Vuchkov N.K. // Prog. Cryst. Growth Charact. Mater. 2011. V. 57. Р. 1. https://doi.org/10.1016/J.PCRYSGROW.2010.09.003
  2. 2. Gotlib I.Yu., Murin I.V., Piotrovskaya E.M., Brodskaya E.N. // Inorg. Mater. 2001. V. 27. P. 975. https://doi.org/10.1023/a:1011622520143
  3. 3. Anji Reddy M., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059. https://doi.org/10.1039/C1JM13535J
  4. 4. Trnovcova V., Fedorov P.P., Buchinskaya I.I., Kubliha M. // Russ. J. Electrochem. 2011. V. 47. № 6. Р. 639. https://doi.org/10.1134/S1023193511050144
  5. 5. Basiev T.T., Vasil’ev S.V., Doroshenko M.E. et al. // Quantum Electronics. 2007. V. 37. P. 934. https://doi.org/10.1070/QE2007v037n10ABEH013662
  6. 6. Ushakov S.N., Fedorov P.P., Kuznetsov S.V. et al. // Opt. Spectrosc. 2020. V. 128. P. 600. https://doi.org/10.1134/S0030400X20050185
  7. 7. Lyapin A.A., Bubnov M.K., Bukarev S.A. et al. // Opt. Spectrosc. 2023. V. 131. № 3. https://ojs.ioffe.ru/index.php/os/article/view/4085
  8. 8. Wu Ye-Qing, Su Liang-Bi, Xu Jun et al. // Acta Phys. Sin. 2012. V. 61. № 17. P. 177801. https://doi.org/10.7498/aps.61.177801
  9. 9. Yeh J.-W. High-entropy multielement alloys. Patent US 2002/0159914 A1 2002.
  10. 10. Yeh J.-W., Chen S.-K., Lin S.-J. et al. // Adv. Eng. Mater. 2004. V. 6. № 5. Р. 299. https://doi.org/10.1002/adem.200300567
  11. 11. Yeh J.-W. // Ann. Chim. – Sci. Mat. 2006. V. 31. P. 633. https://doi.org/10.3166/acsm.31.633-648
  12. 12. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213. https://doi.org/10.1016/j.msea.2003.10.257
  13. 13. Rost C.M., Sachet E., Borman T. et al. // Nature Commun. 2015. V. 6. P. 8485. https://doi.org/10.1038/ncomms9485
  14. 14. Hsieh M.-H., Tsai M.-H., Shen W.-J., Yeh J.-W. // Surf. Coat. Technol. 2013. V. 221. P. 118. https://doi.org/10.1016/j.surfcoat.2013.01.036
  15. 15. Chen X., Wu Y. // J. Am. Ceram. Soc. 2020. V. 103. P. 750. https://doi.org/10.1111/jace.16842
  16. 16. Braic V., Vladescu A., Balaceanu M. et al. // Surf. Coat. Technol. 2012. V. 211. P. 117. https://doi.org/10.1016/J.SURFCOAT.2011.09.033
  17. 17. Gu J., Zou J., Sun S.-K. et al. // Sci. China Mater. 2019. V. 62. № 12. P. 1898. https://doi.org/10.1007/s40843-019-9469-4
  18. 18. Buckingham M.A., Ward-O’Brien B., Xiao W. et al. // Chem. Commun. 2022. V. 58. P. 8025. https://doi.org/0.1039/d2cc01796b
  19. 19. Cavin J., Ahmadiparidari A., Majidi L. et al. // Adv. Mater. 2021. V. 33. 2100347. https://doi.org/10.1002/ADMA.202100347
  20. 20. Wang T., Chen H., Yang Z.Z. et al. // J. Am. Chem. Soc. 2020. V. 142. P. 4550. https://doi.org/10.1021/jacs.9b12377
  21. 21. Wang X., Liu G., Tang C. et al. // J. Alloys Compd. 2023. V. 934. 167889. https://doi.org/10.1016/j.jallcom.2022.167889
  22. 22. Sukkurji P.A., Cui Y., Lee S. et al. // J. Mater. Chem. A. 2021. V. 9. P. 8998. https://doi.org/10.1039/D0TA10209A
  23. 23. Cui Y., Sukkurji P.A., Wang K. et al. // J. Energy Chem. 2022. V. 72. P. 342. https://doi.org/10.1016/j.jechem.2022.05.032
  24. 24. Park J., Yang Y., Park H. et al. // Am. Chem. Soc. 2024. V. 16. № 42. Р. 1944. https://doi.org/10.1021/acsami.4c12920
  25. 25. Chen X., Wu Y. // J. Am. Ceram. Soc. 2020. V. 103. P. 750. https://doi.org/10.1111/jace.16842
  26. 26. Ушаков С.Н., Усламина М.А., Пыненков А.А. и др. // Конденсированные среды и межфазные границы. 2021. Т. 23. № 1. С. 101. https://doi.org/10.17308/kcmf.2021.23/3310
  27. 27. Wang W., Wang Q., Zhang C. et al. // Opt. Express. 2024. V. 32. № 18. Р. 31644. https://doi.org/10.1364/OE.504864
  28. 28. Komandin G.A., Spector I.E., Fedorov P.P. et al. // Opt. Mater. 2022. V. 127. P. 112267. https://doi.org/10.1016/j.optmat.2022.112267
  29. 29. Федоров П.П., Бучинская И.И. // Успехи химии. 2012. Т. 81. № 1. С. 1. https://doi.org/10.1070/RC2012v081n01ABEH004207
  30. 30. Fedorov P.P., Buchinskaya I.I., Serafimov L.A. // Russ. J. Inorg. Chem. 2002. V. 47. № 8. P. 1371.
  31. 31. Бучинская И.И., Федоров П.П. // Кристаллография. 2024. Т. 69. № 2. С. 353. https://doi.org/10.31857/S0023476124020194
  32. 32. Chen J., Mei B., Li W., Zhang Y. // Ceram. Int. 2024. V. 50. № 4. P. 6128. https://doi.org/10.1016/j.ceramint.2023.11.320
  33. 33. Кузнецов С.В., Низамутдинов А.С., Пройдакова В.Ю. и др. // Неорган. материалы. 2019. Т. 55. № 10. Р. 1092. https://doi.org/10.1134/S0002337X19100087
  34. 34. Yasyrkina D.S., Kuznetsov S.V., Ryabova A.V. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2013. V. 4. № 5. P. 648.
  35. 35. Ермакова Ю.А., Федоров П.П., Воронов В.В. и др. // Конденсированные среды и межфазные границы. 2024. Т. 26. № 2. С. 247. https://doi.org/10.17308/kcmf.2024.26/11937
  36. 36. Ясыркина Д.С., Ермакова Ю.А., Иванов В.К. и др. // Журн. структур. химии. 2023. Т. 64. № 9. С. 117233. https://doi.org/10.26902/JSC_id117233
  37. 37. Sobolev B.P. The Rare Earth Trifluorides. Pt 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Institute of Crystallography, Moscow, and Institut d'Estudis Catalans, Barcelona, Spain. 2001. 460 p.
  38. 38. Бучинская И.И., Федоров П.П. // Успехи химии. 2004. Т. 73. № 4. С. 404. https://doi.org/10.1070/RC2004v073n04ABEH000811
  39. 39. Nafziger R.H. // J. Am. Ceram. Soc. 1971. V. 54. P. 467. https://doi.org/10.1111/J.1151-2916.1971.TB12388.X
  40. 40. Klimm D., Rabe M., Bertram R. et al. // J. Cryst. Growth. 2008. V. 310. № 1. P. 152. https://doi.org/10.1016/j.jcrysgro.2007.09.031
  41. 41. Федоров П.П., Бучинская И.И., Ивановская Н.А. и др. // Докл. РАН. 2005. Т. 401. № 5. С. 652.
  42. 42. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1977. 376 с.
  43. 43. Панюшкин В.Т., Афанасьев Ю.А., Ханаев Е.И. и др. Лантаноиды: Простые и комплексные соединения. Ростов н/Д.: Изд-во Рост. ун-та, 1980. 296 с.
  44. 44. Лугинина А.А., Федоров П.П., Кузнецов С.В. и др. // Наносистемы: физика, химия, математика. 2012. Т. 3. № 5. С. 125.
  45. 45. Кузнецов С.В., Федоров П.П., Воронов В.В. и др. // Журн. неорган. химии. 2010. Т. 55. № 4. С. 536.
  46. 46. Маякова М.Н., Кузнецов С.В., Федоров П.П. и др. // Неорган. материалы. 2013. Т. 49. № 11. С. 1242.
  47. 47. Бучинская И.И., Сорокин Н.И. // Журн. неорган. химии. 2023. T. 68. № 7. С. 877. https://doi.org/10.31857/S0044457X23600044
  48. 48. Charkin D.O., Kireev V.E., Siidra O.I. et al. XIX International meeting on crystal chemistry, X-ray diffraction and spectroscopy of minerals. Book of Abstracts / Под ред. Кривовичева С.В. Кольский научный центр РАН, Апатиты, 2019.
  49. 49. Rozhnova Yu.A., Kuznetsov S.V., Luginina A.A. et al. // Mater. Chem. Phys. 2016. V. 172. P. 150. https://doi.org/10.1016/j.matchemphys.2016.01.055
  50. 50. Murty B.S., Yeh J.-W., Srikanth R., Bhattacharjee P.P. High-Entropy Alloys. 2-nd edition. Elsevier, 2019.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library