- PII
- S30345510S0023476125050149-1
- DOI
- 10.7868/S3034551025050149
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 5
- Pages
- 830-836
- Abstract
- A method for obtaining hexagonal boron nitride (h-BN) nanoparticles 2–10 nm in size with a crystallinity of up to 99% has been developed. The method is based on two-stage thermal treatment at temperatures of 600 and 1000°C using boric acid, urea, nitrogen and hydrogen. X-ray phase analysis, high-resolution transmission electron microscopy, electron diffraction in the selected area, and analysis of electron density maps confirmed the hexagonal structure of h-BN with an interplane distance of 3.3 Å, a narrow size distribution, and a uniform distribution of elements in the material. The proposed approach eliminates the use of toxic ammonia, is energy efficient and suitable for industrial scaling. The resulting nanoparticles can be used in tribological coatings and lubricants.
- Keywords
- Date of publication
- 19.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 28
References
- 1. Oku T. Synthesis, Structures and Properties of Boron Nitride Nanoparticles. Cham: Springer International Publishing, 2015. 232 р. https://doi.org/10.1007/978-3-319-13188-7_9-1
- 2. Óvári L., Farkas A.P., Palotás K. et al. // Surf. Sci. Rep. 2024. V. 79. P. 100637. https://doi.org/10.1016/J.SURFREP.2024.100637
- 3. Naclerio A.E., Kidambi P.R. et al. // Adv. Mater. 2023. V. 35. P. 2207374. https://doi.org/10.1002/ADMA.202207374
- 4. Wang J., Ma F., Liang W. et al. // Nanophotonics. 2017. V. 6. P. 976. https://doi.org/10.1515/nanoph-2017-0015
- 5. Narayan J., Bhaumik A. // APL Mater. 2016. V. 4. P. 020701. https://doi.org/10.1063/1.4941095/120597
- 6. Song J., Duan S., Chen X. et al. // Chin. Phys. Lett. 2020. V. 37. P. 076203. https://doi.org/10.1088/0256-307X/37/7/076203
- 7. Li W., Luo T., Zhu C. et al. // Ind. Eng. Chem. Res. 2023. V. 62. P. 444. https://doi.org/10.1021/ACS.IECR.2C03639
- 8. Anafcheh M., Ghafouri R. // J. Clust. Sci. 2014. V. 25. P. 1173. https://doi.org/10.1007/S10876-014-0698-0
- 9. Afzal O., Shafi W.K., Charoo M.S. // Energy Sources. A. 2020. V. 47. P. 4128. https://doi.org/10.1080/15567036.2020.1864516
- 10. Oku T. // B-C-N Nanotubes and Related Nanostructures. NY: Springer, 2009. P. 149. https://doi.org/10.1007/978-1-4419-0086-9_6
- 11. Wang J., Ma F., Liang W. et al. // Mater. Today Phys. 2017. V. 2. P. 34. https://doi.org/10.1016/J.MTPHYS.2017.07.001
- 12. Naresh Muthu R., Rajashabala S., Kannan R. et al. // Renew. Energy. 2016. V. 85. P. 394. https://doi.org/10.1016/J.RENENE.2015.06.056
- 13. Charoo M.S., Wani M.F. // Lubr. Sci. 2017. V. 29. P. 254. https://doi.org/10.1002/LS.1366
- 14. Kim T.H., Ko E.H., Nam J. et al. // J. Nanosci. Nanotechnol. 2017. V. 17. P. 9223. https://doi.org/10.1166/JNN.2017.13865
- 15. Kayani Z.N., Bashir Z., Mohsin M. et al. // Optik (Stuttg.). 2021. V. 243. P. 167502. https://doi.org/10.1016/j.ijleo.2021.167502
- 16. Queiroz S.M., Medeiros F.S., Silva G.G. et al. // Nanotechnol. 2022. V. 33. P. 035714. https://doi.org/10.1088/1361-6528/ac20ff
- 17. Shaikh M., Ravi P., Roselina N.N. et al. // J. Eng. Tribol. 2024. V. 238. P. 1233. https://doi.org/101177/13506501241257560.
- 18. Bae D.S., Kim C., Lee H. et al // Nano Converg. 2022. V. 9. P. 10. https://doi.org/10.1186/S40580-022-00312-Y/FIGURES/7
- 19. Yuan Y., Weber J., Li J. et al. // Nat. Commun. 2024. V. 15. P. 12. https://doi.org/10.1038/s41467-024-48485-w
- 20. Lin J., Tay R.Y., Li H. et al. // Nanoscale. 2018. V. 10. P. 16251. https://doi.org/10.1039/C8NR03984D
- 21. Sutorius A., Weißing R., Rindtorff Pèrez C. et al. // Nanoscale. 2024. P. 16. V. 15792. https://doi.org/10.1039/D4NR02624A
- 22. Prus A., Owarzany R., Jezierski D. et al. // Dalton Trans. 2024. V. 53. P. 8140. https://doi.org/10.1039/D4DT00682H
- 23. Ma R., Bando Y., Sato T. // Chem. Phys. Lett. 2001. V. 337. P. 64. https://doi.org/10.1016/S0009-2614 (01)00194-4
- 24. Wagare D.S., Shirsath S.E., Shaikh M. et al. // Environ. Chem. Lett. 2021. V. 19. P. 3282. https://doi.org/10.1007/S10311-020-01176-6
- 25. Kostoglou N., Polychronopoulou K., Rebholz C. // Vacuum. 2015. V. 112. P. 45. https://doi.org/10.1016/J.VACUUM.2014.11.009
- 26. KInacI A., Haskins J.B., Sevik C. et al. // Phys. Rev. B. 2012. V. 86. P. 115410. https://doi.org/10.1103/PHYSREVB.86.115410/FIGURES/5/THUMBNAIL
- 27. Liu F.H., Pang M. // Mater Today Commun. 2024. V. 39. P. 108601. https://doi.org/10.1016/J.MTCOMM.2024.108601
- 28. Liu H., Yan M., Jing W. et al. // Diam. Relat. Mater. 2024. V. 148. P. 111410. https://doi.org/10.1016/J.DIAMOND.2024.111410
- 29. Yang Y., Peng Y., Saleem M.F. et al. // Materials. 2022. V. 15. P. 4396. https://doi.org/10.3390/MA15134396
- 30. Abdurakhmonov O., Sharopov U., Abdurakhmonov S. et al. // J. Magn. Magn. Mater. 2024. V. 600. P. 172130. https://doi.org/10.1016/J.JMMM.2024.172130
- 31. Abdurakhmonov O.E., Sharopov U.B., Abdurakhmonov Sh.E. et al. // J. Magn. Magn. Mater. 2024. V. 589. P. 171562. https://doi.org/10.1016/j.jmmm.2023.171562
- 32. Sharopov U., Samiev K., To’raev A. et al. // Vacuum. 2024. V. 227. P. 113395. https://doi.org/10.1016/J.VACUUM.2024.113395
- 33. Абдурахмонов О.Э., Алисултанов М.Э., Вертаева Д.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1032. https://doi.org/10.31857/S0044457X22070029
- 34. Llenas M., Cuenca L., Santos C. et al. // Biomedicines. 2022. V. 10. P. 3238. https://doi.org/10.3390/BIOMEDICINES10123238/S1
- 35. Bandarenka H., Burko A., Girel K. et al. // Crystals. 2023. V. 13. P. 749. https://doi.org/10.3390/CRYST13050749
- 36. Komilov A., Abdulkhaev O., Nasrullayev Y. et al. // Appl. Sol. Energy. 2024. V. 60. P. 188. https://doi.org/10.3103/S0003701X24602059
- 37. Revabhai P.M., Singhal R.K., Basu H. et al. // J. Nanostruct. Chem. 2022. V. 13. P. 41. https://doi.org/10.1007/S40097-022-00490-5
- 38. Abdurakhmonov O.E., Alisultanov M.E., Abdurakhmonov Sh.E. et al. // Nanobiotech. Rep. 2023. V. 18. P. 232. https://doi.org/10.1134/S2635167623700064
- 39. Tan Y., Yan X., Tang C. et al. // J. Mater. Sci.: Mater. Electron. 2021.V. 32. P. 23325. https://doi.org/10.1007/s10854-021-06817-2
- 40. Paine R., Narula C. // Chem. Rev. 1990. V. 90. № 1. P. 73. https://doi.org/10.1021/cr00099a004
- 41. McLean B., Page A.J. Boron Nitride Nanomaterials: Properties, Fabrication, and Applications. Jenny Stanford Publishing. 2023. 226 р. https://doi.org/10.1201/9781003314486