- PII
- S30345510S0023476125050175-1
- DOI
- 10.7868/S3034551025050175
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 5
- Pages
- 856-864
- Abstract
- The paper presents the results of studying the structural and phase composition, optical and thermoluminescent properties of β-GaO ceramic samples obtained by plasma gas-thermal spraying from the perspective of its application as a luminescent material. Both synthesized samples and those that had undergone post-growth high-temperature and plasma treatment were studied. It is shown that synthesized ceramic samples without additional processing do not provide the necessary sensitivity to radiation due to the high concentration of their own F-type defects, and the thermoluminescence peak is located at a temperature of 350°C, which is inconvenient for registration. Samples of β-GaO ceramics with post-growth high-temperature and plasma treatment, high thermoluminescence yield and thermoluminescence peak located at 120°C are competitive in comparison with thermoluminescent detectors on the market when irradiated with doses in the range of 0.2–2.5 Gy.
- Keywords
- Date of publication
- 16.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 31
References
- 1. Mc Keever S.W. // Radiat. Meas. 2024. V. 171. P. 107062. https://doi.org/10.1016/j.radmeas.2024.107062
- 2. Aluker N.L., Artamonov A.S., Herrmann M. // Instrum. Exp. Tech. 2021. V. 64. P. 437. https://doi.org/10.1134/S0020441221020214
- 3. Sankowska M., Bilski P., Marczewska B., Zhydachevskyy Y. // Materials. 2023. V. 16. № 4. P. 1489. https://doi.org/10.3390/ma16041489
- 4. Бараночников М.Л. // Приемники и детекторы излучений. Справочник. М.: ДМК Пресс, 2012. С. 48.
- 5. Luchechko A., Vasyltsiv V., Kushlyk M. et al. // Materials. 2024. V. 17. № 6. P. 1391. https://doi.org/10.3390/ma17061391
- 6. Remple C., Huso J., Weber M.H. et al. // J. Appl. Phys. 2024. V. 135. P. 185702. https://doi.org/10.1063/5.0196824
- 7. Harwig T., Kellendonk F., Slappendel S. // J. Phys. Chem. Solids. 1978. V. 39. № 6. P. 675. https://doi.org/10.1016/0022-3697 (78)90183-X
- 8. Муслимов А.Э., Гаджиев М.Х., Тюфтяев А.С. и др. // Письма в ЖТФ. 2025. Т. 51. Вып. 6. С. 42. https://doi.org/10.61011/PJTF.2025.06.59931.20146
- 9. Aluker N.L., Artamonov A.S., Herrmann M. et al. // Instrum. Exp. Tech. 2021. V. 64. P. 860. https://doi.org/10.1134/S0020441221050158
- 10. Gadzhiev M.Kh., Muslimov A.E., Yusupov D.I. et al. // Materials. 2024. V. 17. № 24. P. 6078. https://doi.org/10.3390/ma17246078
- 11. Zhang Z., Farzana E., Arehart A.R., Ringel S.A. // Appl. Phys. Lett. 2016. V. 108. P. 52105. https://doi.org/10.1063/1.4941429
- 12. Luchechko A., Vasyltsiv V., Kostyk L. et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 441. P. 12. https://doi.org/10.1016/j.nimb.2018.12.045
- 13. Tuttle B.R., Karom N.J., O'Hara A. et al. // Physics. 2023. V. 133. P. 015703. https://doi.org/10.1063/5.0124285
- 14. Esteves D.M., Rodrigues A.L., Alves L.C. et al. // Sci. Rep. 2023. V. 13. № 1. P. 4882. https://doi.org/10.1038/s41598-023-31824-0
- 15. Petkov A., Cherns D., Chen W.Y. et al. // Appl. Phys. Lett. 2022. V. 121. № 17. P. 171903. https://doi.org/10.1063/5.0120089
- 16. Kaur D., Kumar M. // Adv. Opt. Mater. 2021. V. 9. № 9. P. 2002160. https://doi.org/10.1002/adom.202002160
- 17. Manikanthababu N., Sheoran H., Siddham P., Singh R. // Crystals. 2022. V. 12 № 7. P. 1009. https://doi.org/10.3390/cryst12071009
- 18. Guo D.Y., Qian Y.P., Su Y.L. et al. // AIP Adv. 2017. V. 7. № 6. P. 065312. https://doi.org/10.1063/1.4990566