RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Thermoluminescence of Dense β-GaO Ceramics Synthesized by Gas-Thermal Spraying

PII
S30345510S0023476125050175-1
DOI
10.7868/S3034551025050175
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
856-864
Abstract
The paper presents the results of studying the structural and phase composition, optical and thermoluminescent properties of β-GaO ceramic samples obtained by plasma gas-thermal spraying from the perspective of its application as a luminescent material. Both synthesized samples and those that had undergone post-growth high-temperature and plasma treatment were studied. It is shown that synthesized ceramic samples without additional processing do not provide the necessary sensitivity to radiation due to the high concentration of their own F-type defects, and the thermoluminescence peak is located at a temperature of 350°C, which is inconvenient for registration. Samples of β-GaO ceramics with post-growth high-temperature and plasma treatment, high thermoluminescence yield and thermoluminescence peak located at 120°C are competitive in comparison with thermoluminescent detectors on the market when irradiated with doses in the range of 0.2–2.5 Gy.
Keywords
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Mc Keever S.W. // Radiat. Meas. 2024. V. 171. P. 107062. https://doi.org/10.1016/j.radmeas.2024.107062
  2. 2. Aluker N.L., Artamonov A.S., Herrmann M. // Instrum. Exp. Tech. 2021. V. 64. P. 437. https://doi.org/10.1134/S0020441221020214
  3. 3. Sankowska M., Bilski P., Marczewska B., Zhydachevskyy Y. // Materials. 2023. V. 16. № 4. P. 1489. https://doi.org/10.3390/ma16041489
  4. 4. Бараночников М.Л. // Приемники и детекторы излучений. Справочник. М.: ДМК Пресс, 2012. С. 48.
  5. 5. Luchechko A., Vasyltsiv V., Kushlyk M. et al. // Materials. 2024. V. 17. № 6. P. 1391. https://doi.org/10.3390/ma17061391
  6. 6. Remple C., Huso J., Weber M.H. et al. // J. Appl. Phys. 2024. V. 135. P. 185702. https://doi.org/10.1063/5.0196824
  7. 7. Harwig T., Kellendonk F., Slappendel S. // J. Phys. Chem. Solids. 1978. V. 39. № 6. P. 675. https://doi.org/10.1016/0022-3697 (78)90183-X
  8. 8. Муслимов А.Э., Гаджиев М.Х., Тюфтяев А.С. и др. // Письма в ЖТФ. 2025. Т. 51. Вып. 6. С. 42. https://doi.org/10.61011/PJTF.2025.06.59931.20146
  9. 9. Aluker N.L., Artamonov A.S., Herrmann M. et al. // Instrum. Exp. Tech. 2021. V. 64. P. 860. https://doi.org/10.1134/S0020441221050158
  10. 10. Gadzhiev M.Kh., Muslimov A.E., Yusupov D.I. et al. // Materials. 2024. V. 17. № 24. P. 6078. https://doi.org/10.3390/ma17246078
  11. 11. Zhang Z., Farzana E., Arehart A.R., Ringel S.A. // Appl. Phys. Lett. 2016. V. 108. P. 52105. https://doi.org/10.1063/1.4941429
  12. 12. Luchechko A., Vasyltsiv V., Kostyk L. et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 441. P. 12. https://doi.org/10.1016/j.nimb.2018.12.045
  13. 13. Tuttle B.R., Karom N.J., O'Hara A. et al. // Physics. 2023. V. 133. P. 015703. https://doi.org/10.1063/5.0124285
  14. 14. Esteves D.M., Rodrigues A.L., Alves L.C. et al. // Sci. Rep. 2023. V. 13. № 1. P. 4882. https://doi.org/10.1038/s41598-023-31824-0
  15. 15. Petkov A., Cherns D., Chen W.Y. et al. // Appl. Phys. Lett. 2022. V. 121. № 17. P. 171903. https://doi.org/10.1063/5.0120089
  16. 16. Kaur D., Kumar M. // Adv. Opt. Mater. 2021. V. 9. № 9. P. 2002160. https://doi.org/10.1002/adom.202002160
  17. 17. Manikanthababu N., Sheoran H., Siddham P., Singh R. // Crystals. 2022. V. 12 № 7. P. 1009. https://doi.org/10.3390/cryst12071009
  18. 18. Guo D.Y., Qian Y.P., Su Y.L. et al. // AIP Adv. 2017. V. 7. № 6. P. 065312. https://doi.org/10.1063/1.4990566
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library