RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

The design of the crystals structure study. I. Optimization of data collection on modern diffractometers

PII
S30345510S0023476125050207-1
DOI
10.7868/S3034551025050207
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
881-889
Abstract
The disadvantages of the “strategy” scan-lists for diffraction experiments created by the diffractometer software are shown. The reason for these disadvantages is that the traditionally used target function has a limited, local meaning, for example, to obtain the best coverage of the reciprocal space. An approach is proposed that implements the principle of statistical randomization of the experiment and makes it possible to achieve the strategic goal of structural analysis – obtaining a model capable of reflecting the subtle details of the atomic structure. A scan-list balanced by most factors has been found, which in less time leads to obtaining experimental data of significantly higher quality than traditional lists. The use of a reference crystal, previously measured dozens of times on diffractometers around the world, has shown the advantage of experimental data obtained by a new method. Increasing the balance and accuracy of the data resulted in a maximum improvement in the values of the refinement criteria to R1/wR2 = 0.53/0.59% and Δρ = –0.47/+0.30 e/Å. The achievement of the strategic goal of the research of the reference crystal (confirmation of the anharmonic model of atomic displacement parameters) could be confirmed not only by the “purification” of difference Fourier syntheses of electron density, which is sometimes visual and subjective, but also by a statistically flawless decrease in the R-factors of refinement by 30–40 relative %. Data of such high quality are needed to study the dynamics of structural models under external conditions, for the detection and modeling of phase transitions, critical points, bio- and chemical activity of compounds, verification of computational methods of structures.
Keywords
Date of publication
21.02.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Dudka A.P., Khrykina O.N., Bolotina N.B. et al. // J. Alloys Compd. 2017. V. 692. P. 535. https://doi.org/10.1016/j.jallcom.2016.09.059
  2. 2. Дудка А.П. // Кристаллография. 2008. Т. 53. № 4. C. 744.
  3. 3. Otwinowski Z., Borek D., Majewski W., Minor W. // Acta Cryst. A. 2003. V. 59. P. 228. https://doi.org/10.1107/S0108767303005488
  4. 4. Paciorek W.A., Meyer M., Chapuis G. // J. Appl. Cryst. 1999. V. 32. P. 11. https://doi.org/10.1107/S0021889898005172
  5. 5. Paciorek W.A., Meyer M., Chapuis G. // Acta Cryst. A. 1999. V. 55. P. 543. https://doi.org/10.1107/S0108767398015037
  6. 6. Pflugrath J.W. // Acta Cryst. D. 1999. V. 55. P. 1718. https://doi.org/10.1107/S090744499900935X
  7. 7. Zhurov V.V., Zhurova E.A., Pinkerton A.A. // J. Appl. Cryst. 2008. V. 41. P. 340. https://doi.org/10.1107/S0021889808004482
  8. 8. Domagala S., Nourd P., Diederichs K., Henn J. // J. Appl. Cryst. 2023. V. 56. P. 1200. https://doi.org/10.1107/S1600576723004764
  9. 9. Dudka A. // J. Appl. Cryst. 2010. V. 43. № 6. P. 1440. https://doi.org/10.1107/S0021889810037131
  10. 10. Дудка А.П. // Кристаллография. 2016. Т. 61. № 2. С. 209. https://doi.org/10.7868/S0023476116020077
  11. 11. Smirnova E.S., Alekseeva O.A., Dudka A.P. et al. // Acta Cryst. B. 2019. V. 75. P. 954. https://doi.org/10.1107/S2052520619010473
  12. 12. Zhou Z., Li C., Fan L. et al. // J. Appl. Cryst. 2024. V. 57. P. 741. https://doi.org/10.1107/S1600576724002899
  13. 13. Ketawala G., Reiter C.M., Fromme P., Botha S. // J. Appl. Cryst. 2024. V. 57. P. 529. https://doi.org/10.1107/S1600576724000116
  14. 14. Dudka A. // J. Appl. Cryst. 2010. V. 43. P. 27. https://doi.org/10.1107/S0021889809051577
  15. 15. Krause L., Herbst-Irmer R., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 1907. https://doi.org/10.1107/S1600576715020440
  16. 16. Dudka A. // J. Appl. Cryst. 2007. V. 40. P. 602. https://doi.org/10.1107/S0021889807010618
  17. 17. Pauw B.R., Smales G.J., Anker A.S. et al. // J. Appl. Cryst. 2023. V. 56. P. 1618. https://doi.org/10.1107/S1600576723008324
  18. 18. Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. М.: Наука, 1976. 736 с.
  19. 19. Клименкова А.А., Максимов Б.А., Молчанов В.Н. и др. // Кристаллография. 2007. Т. 52. № 2. С. 238.
  20. 20. Rigaku Oxford Diffraction, 2018, CrysAlisPro Software System, Version 1.171.39.46, Rigaku Corporation, Oxford, UK.
  21. 21. Дудка А.П. // Кристаллография. 2008. Т. 53. № 2. С. 372.
  22. 22. Hamilton W.C. // Acta Cryst. 1965. V. 18. P. 502. https://doi.org/10.1107/S0365110X65001081
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library