RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

CATION-DEFICIENT SODIUM–GADOLINIUM MOLYBDATES OF VARIABLE COMPOSITION. SIMULATION OF THE PROPERTIES AND LOCAL STRUCTURE

PII
10.31857/S0023476122600550-1
DOI
10.31857/S0023476122600550
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
536-545
Abstract
Cation-deficient Na2–3xGdxMoO4 solid solutions in the NaGd(MoO4)2–Gd2(MoO4)3 system have been simulated by the interatomic potentials method. The parameters and volume of unit cell, as well as density, bulk modulus, enthalpy, vibrational entropy, and heat capacity in dependence of the composition are determined. Temperature dependences of the heat capacity and vibrational entropy are plotted. The local structure of the solid solutions has been studied. It is shown that the vacancy–oxygen distances are on average 5.0% larger than the Na–O distances and 11.8% larger than the Gd–O distances. The sizes of these coordination polyhedra slightly increase with an increase in the gadolinium content, which is accompanied by an increase in the unit-cell size. The parameter c increases with a higher rate as compared to a, which is indicative of distortion of the unit cell and polyhedra.
Keywords
SODIUM–GADOLINIUM MOLYBDATES PROPERTIES AND LOCAL STRUCTURE
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Mo F., Zhou L., Pang Q. et al. // Ceram. Int. 2012. V. 38. P. 6289. https://doi.org/10.1016/j.ceramint.2012.04.084
  2. 2. Li L., Dong D., Zhang J. et al. // Mater. Lett. 2014. V. 131. P. 298. https://doi.org/10.1016/j.matlet.2014.05.205
  3. 3. Zhao C., Yin X., Huang F. et al. // J. Solid State Chem. 2011. V. 184. P. 3190. https://doi.org/10.1016/j.jssc.2011.09.025
  4. 4. Zharikov E.V., Zaldo C., Diaz F. // MRS Bull. 2009. V. 34. P. 271. https://doi.org/10.1557/mrs2009.78
  5. 5. Wu L., Chen Z., Wu Y. et al. // Cryst. Res. Technol. 2016. V. 51. P. 137. https://doi.org/10.1002/crat.201500228
  6. 6. Bi W., Meng Q., Sun W. et al. // Ceram. Int. 2017. V. 43. P. 1460. https://doi.org/10.1016/j.ceramint.2016.10.114
  7. 7. Zhang L., Meng Q., Sun W. et al. // Ceram. Int. 2021. V. 47. P. 670. https://doi.org/10.1016/j.ceramint.2020.08.175
  8. 8. Li A., Li Z., Pan L. et al. // J. Alloys Compd. 2022. V. 904. P. 164087. https://doi.org/10.1016/j.jallcom.2022.164087
  9. 9. Майер А.А., Провоторов M.B., Балашов В.А. // Успехи химии. 1973. Т. 42. С. 1788.
  10. 10. Кузьмичева Г.М., Рыбаков В.Б., Панютин В.Л. и др. // Журн. неорган. химии. 2010. Т. 55. С. 1534. https://doi.org/10.1134/S0036023610090196
  11. 11. Li A., Li J., Chen Z. et al. // Mater. Express. 2015. V. 5. P. 527. https://doi.org/10.1166/mex.2015.1269
  12. 12. Дудникова В.Б., Жариков Е.В. // ФТТ. 2017. Т. 59. С. 847.
  13. 13. Дудникова В.Б., Жариков Е.В. // Кристаллография. 2018. Т. 63. С. 184. https://doi.org/10.7868/S0023476118020030
  14. 14. Zharikov E.V., Dudnikova V.B., Zinovieva N.G. et al. // J. Alloys Compd. 2022. V. 896. P. 163083. https://doi.org/10.1016/j.jallcom.2021.163083
  15. 15. Kröger F.A., Vink H.J. // Solid State Phys. 1956. V. 3. P. 307. https://doi.org/10.1016/S0081-1947 (08)60135-6
  16. 16. Kuz'micheva G.M., Kaurova I.A., Rybakov V.B. et al. // CrystEngComm. 2016. V. 18. P. 2921. https://doi.org/10.1039/c5ce02570b
  17. 17. Zharikov E.V., Subbotin K.A., Titov A.I. et al. // Cryst. Res. Technol. 2020. V. 55. P. 1900238. https://doi.org/10.1002/crat.201900238
  18. 18. Субботин К.А., Титов А.И., Лис Д.А. и др. // Кристаллография. 2020. Т. 65. С. 180. https://doi.org/10.31857/S0023476120020265
  19. 19. Morozov V., Arakcheeva A., Redkin B. et al. // Inorg. Chem. 2012. V. 51. P. 5313. https://doi.org/10.1021/ic300221m
  20. 20. Prewitt C.T. // Solid State Commun. 1970. V. 8. P. 2037. https://doi.org/10.1016/0038-1098 (70)90687-3
  21. 21. Keve E.T., Abrahams S.C., Bernstein J.L. // J. Chem. Phys. 1971. V. 54. P. 3185. https://doi.org/10.1063/1.1675308
  22. 22. Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. P. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180
  23. 23. Dardenne K., Bosbach D., Denecke M.A. et al. // Speciation Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources. Workshop Proceedings, Karlsruhe, Germany. 18–20 September 2006. P. 193.
  24. 24. Kuz'micheva G.M., Khramov E.V., Kaurova I.A. // Struct. Chem. 2021. V. 32. P. 321. https://doi.org/10.1007/s11224-020-01641-6
  25. 25. Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552.
  26. 26. Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90.
  27. 27. Vinograd V.L., Bosbach D., Winkler B. et al. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 3509. https://doi.org/10.1039/b801912f
  28. 28. Дудникова В.Б., Жариков Е.В. // ФТТ. 2017. Т. 59. С. 841.
  29. 29. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.
  30. 30. Schieber M., Holmes L. // J. Appl. Phys. 1964. V. 35. P. 1004. https://doi.org/10.1063/1.1713352
  31. 31. The international database PCPDFWIN. V. 2.02, 1999. JCPDS. Card 25-0828 of the PDF catalogue.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library