RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

X-RAY REFLECTOMETRY OF THIN FILMS FORMED DURING PHASE SEPARATION OF ORGANIC SOLUTIONS OF ALIPHATIC POLYETHERS IN WATER

PII
10.31857/S0023476123010022-1
DOI
10.31857/S0023476123010022
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
94-99
Abstract
The possibilities of X-ray reflectometry for studying the structure of planar liquid-phase membranes are demonstrated by the example of polyester films formed on the surface of deionized water from solutions of polylactoglycolide (PLG) in chloroform and tetraglycol (TG). It is found that the use of solutions with PLG concentrations ranging from 1 to 4 wt % or above 6 wt % leads to a proportional increase in the density of these films with preservation of their structure and thickness up to 25 Å. At a PLG concentration close to 5 wt % the PLG/TG system transits to an unstable state, characterized by intense penetration of PLG aliphatic chains into the water substrate bulk to a depth up to 100 Å.
Keywords
X-RAY REFLECTOMETRY THIN FILMS ORGANIC SOLUTIONS
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Martina M., Hutmacher D.W. // Polymer Int. 2007. V. 56. № 2. P. 145. https://doi.org/10.1002/pi.2108
  2. 2. Sensini A., Gualandi C., Focarete M.L. et al. // Biofabrication. 2019. V. 11. № 3. P. 035026.
  3. 3. Karageorgiou V., Kaplan D. // Biomaterials. 2005. V. 26. № 27. P. 5474. https://doi.org/10.1016/j.biomaterials.2005.02.002
  4. 4. Pryadko A., Surmeneva M., Surmenev R. // Polymers. 2021. V. 13. № 11. P. 1738. https://doi.org/10.3390/polym13111738
  5. 5. Chen G.Q., Wu Q. // Biomaterials. 2005. V. 26. № 33. P. 6565. https://doi.org/10.1016/j.biomaterials.2005.04.036
  6. 6. Eltom A., Zhong G., Muhammad A. // Adv. Mater. Sci. Eng. 2019. V. 2019. P. 3429527. https://doi.org/10.1155/2019/3429527
  7. 7. Yin H.M., Qian J., Zhang J. et al. // Polymers. 2016. V. 8. № 6. P. 213. https://doi.org/10.3390/polym8060213
  8. 8. Adamkiewicz M., Rubinsky B. // Cryobiology. 2015. V. 71. № 3. P. 518. https://doi.org/10.1016/j.cryobiol.2015.10.152
  9. 9. Kamali A., Shamloo A. // J. Biomechanics. 2019. V. 98. P. 109466. https://doi.org/10.1016/j.jbiomech.2019.109466
  10. 10. Mou Z.L., Zhao L.J., Zhang Q.A. et al. // J. Supercrit. Fluids. 2011. V. 58. P. 398. https://doi.org/10.1016/j.supflu.2011.07.003
  11. 11. Sun H., Zhao Q., Zheng L.W. et al. // Nano LIFE. 2021. V. 11. № 4. P. 2141005. https://doi.org/10.1142/S1793984421410051
  12. 12. Li Z., Jiang Z., Zhao L. et al. // Mater. Sci. Eng. C. 2017. V. 81. P. 443. https://doi.org/10.1016/j.msec.2017.08.019
  13. 13. van de Vitte P., Esselbrugge H., Dijkstra P.J. et al. // J. Membr. Sci. 1996. V. 113. № 2. P. 223. https://doi.org/10.1016/0376-7388 (95)00068-2
  14. 14. Sawalha H., Schroen K., Boom R. // J. Appl. Polym. Sci. 2007. V. 104. P. 959. https://doi.org/10.1002/app.25808
  15. 15. Mitrinovic D.M., Tikhonov A.M., Li M. et al. // Phys. Rev. Lett. 2000. V. 85. P. 582. https://doi.org/10.1103/PhysRevLett.85.582
  16. 16. Tikhonov A.M., Schlossman M.L. // J. Phys. Chem. B. 2003. V. 107. P. 3344. https://doi.org/10.1021/jp0271817
  17. 17. Mironov A.V., Mironova O.A., Syachina M.A., Popov V.K. // Polymer. 2019. V. 182. № 2. P. 121845. https://doi.org/10.1016/j.polymer.2019.121845
  18. 18. Ramos T., Moroni L. // Tissue Eng. Pt C: Methods. V. 26. № 2. P. 91. https://doi.org/10.1089/ten.tec.2019.0344
  19. 19. Hoshi K., Fujihara Y., Yamawaki T. et al. // Histochem. Cell. Biol. 2018. V. 149. P. 375. https://doi.org/10.1007/s00418-018-1652-2
  20. 20. Aubert-Pouëssel A., Venier-Julienne M.C., Saulnier P. et al. // Pharm. Res. 2005. V. 21. № 12. P. 2384. https://doi.org/10.1007/s11095-004-7693-3
  21. 21. Hamley I.W., Pedersen J.S. // J. Appl. Cryst. 1994. V. 27. P. 29. https://doi.org/10.1107/S0021889893006260
  22. 22. Tolan M. X-Ray Scattering from Soft-Matter Thin Films / V. 148 of Springer Tracts in Modern Physics. Berlin: Springer-Verlag, 1999. 197 p. https://doi.org/10.1007/BFb0112834
  23. 23. Kozhevnikov I.V. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 508. P. 519. https://doi.org/10.1016/S0168-9002 (03)01512-2
  24. 24. Тихонов А.М., Асадчиков В.Е., Волков Ю.О. и др. // Приборы и техника эксперимента. 2021. № 1. С. 146. https://doi.org/10.31857/S0032816221010158
  25. 25. Асадчиков В.Е., Бабак В.Г., Бузмаков А.В. и др. // Приборы и техника эксперимента. 2005. № 3. С. 99. https://doi.org/10.1007/s10786-005-0064-4
  26. 26. Асадчиков В.Е., Волков Ю.О., Рощин Б.С. и др. // Радиоэлектроника. Наносистемы. Информационные технологии. 2020. Т. 12. № 1. С. 145. https://doi.org/10.17725/rensit.2020.12.145
  27. 27. Kozhevnikov I.V., Peverini L., Ziegler E. // Phys. Rev. B. 2012. V. 85. P. 125439. https://doi.org/10.1103/PhysRevB.85.125439
  28. 28. Braslau A., Pershan P.S., Swislow J. et al. // Phys. Rev. A. 1988. V. 38. № 5. P. 2457. https://doi.org/10.1103/PhysRevA.38.2457
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library