RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Ring Silicates Cs4Tm2[Si4O12](OH)2 and Cs4(Tm,Tb)2[Si4O12](OH)2 As Merohedral Twins

PII
10.31857/S0023476123010058-1
DOI
10.31857/S0023476123010058
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
18-24
Abstract
New ring silicates Cs4Tm2[Si4O12](OH)2 and Cs4(Tm,Tb)2[Si4O12](OH)2 have been synthesized by the hydrothermal method. A structural analogy is revealed between them and the previously studied silicates K4Sc2(OH)2(Si4O12) and K2Sc[Si2O6]F. Their crystal structures are identified as orthorhombic merohedral twins by the lost element of tetragonal symmetry. The structures of new ring silicates are related to those of fresnoite and tetragonal melilite.
Keywords
RING SILICATES HYDROTHERMAL METHOD CRYSTAL STRUCTURE
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. The Cambridge Crystallographic Data Centre (CCDC). Inorganic Crystal Structure Data Base – ICSD. https://www.ccdc.cam.ac.uk/, http://www.fiz-karlsruhe.de
  2. 2. Пущаровский Д.Ю. // Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.
  3. 3. Crystallography Open Database. crystallography.net/cod
  4. 4. Mueller-Bunz H., Schleid T. // Z. Anorg. All. Chem.1999. B. 625. S. 613.
  5. 5. Garra W., Marchetti F., Merlino S. // J. Solid State Chem. 2009. V. 182. P. 1529.
  6. 6. Kahlenberg V., Aichholzer P. // Acta Cryst. E. 2014. V. 70. P. i34.
  7. 7. Fleet M.E., Liu X. // Am. Mineral. 2004. V. 89. P. 396.
  8. 8. Vidican I., Smith M.D., zur Loye H.C. // J. Solid State Chem. 2003. V. 170. P. 203.
  9. 9. Fleet M.E., Liu X. // Z. Krist. 2003. B. 218. S. 795.
  10. 10. Sieke C., Hartenbach I., Schleid T. // Z. Natur. B. 2002. B. 57. S. 1427.
  11. 11. Ananias D., Kostova M., Paz F.A.A. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 10410.
  12. 12. Hartenbach I., Lissner F., Schleid T. // Z. Natur. B. 2003. B. 58. S. 925.
  13. 13. Fulle K., Sanjeewa L.D., McMillen C.D., Kolis J.W. // Acta Cryst. B. 2017. V. 73. P. 907.
  14. 14. Topnikova A.P., Belokoneva E.L., Dimitrova et al. // Crystallography Reports. 2016. V. 61. № 4. P. 566.
  15. 15. Lee Ch.-Sh., Liao Yu.-C., Hsu J.-T. et al. // Inorg. Chem. 2008. V. 47. P. 1910.
  16. 16. Bao X., Liu X., Liu X. // RSC Adv. 2017. V. 7. P. 50195.
  17. 17. Wang G., Li J., Yu J. et al. // Chem. Mat. 2006. V. 18. P. 5637.
  18. 18. Morrison G., Latshaw A.M., Spagnuolo N.R., Zur Loye H.-C. // J. Am. Chem. Soc. 2017. V. 139. № 41. P. 14743.
  19. 19. Zhao X., Li J., Chen P. et al. // Inorg. Chem. 2010. V. 49. P. 9833.
  20. 20. Ananias D., Ferreira A., Rocha J. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 5735.
  21. 21. Agilent Technologies, CrysAlisPro Software System, version 1.171.3735. Agilent Technoligies UK Ltd. Oxford, UK, 2014.
  22. 22. Sheldrick G.M. // Acta Cryst. A. 2008. V. 64. P. 112.
  23. 23. Farrugia L.J. // J. Appl. Cryst. 2012. V. 45. P. 849.
  24. 24. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3.
  25. 25. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345.
  26. 26. Dowty E. // ATOMS. Shape Software, Kingsport, Tennessee, USA, 2006.
  27. 27. Пятенко Ю.А., Воронков А.А., Жданова Т.А. // Докл. АН СССР. 1979. Т. 248. С. 868.
  28. 28. Hejny C., Kahlenberg V., Eberhard T., Krüger H. // Acta Cryst. B. 2016. V. 72. P. 209.
  29. 29. Masse R., Grenier J.C., Durif A. // Bull. Soc. Franc. Mineral. Crist. 1967. V. 90. P. 20.
  30. 30. Bindi L., Bonazzi P., Dusek M. et al. // Acta Cryst. B. 2001. V. 57. P. 739.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library