RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Dissolution Energies of Impurities and Their Clusters in Powellite CaMoO4

PII
10.31857/S002347612301006X-1
DOI
10.31857/S002347612301006X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
11-17
Abstract
The impurity defects in CaMoO4 are simulated by the method of interatomic potentials. The dissolution energies of monovalent, divalent, and trivalent impurities are calculated, their comparative analysis is performed, and the main patterns of change are presented. The most probable localization of defects is determined. In the case of heterovalent impurities, the most energetically favorable mechanism for their charge compensation has been found, both due to intrinsic crystal defects and under conjugate isomorphism. It is shown that the formation of impurity clusters with intrinsic crystal defects and (to a greater extent) the formation of clusters of different-valence impurities may significantly reduce the dissolution energy of impurities. The formation of neutral clusters of univalent impurities with oxygen vacancies not only makes it possible to increase the solubility of impurities but also reduces the probability of the formation of color centers.
Keywords
IMPURITY DEFECTS CALCIUM MOLYBDATE
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Hu Y., Zhuang W., Ye H. et al. // J. Alloys Compd. 2005. V. 390. P. 226.
  2. 2. Dixit P., Chauhan V., Kumar P., Pandey P.C. // J. Luminescence. 2020. V. 223. P. 117240.
  3. 3. Zhuang R.Z., Zhang L.Z., Lin Z.B., Wang G.F. // Mat. Res. Innovations 2008. V. 12. P. 62.
  4. 4. Шилова Г.В., Сироткин А.А., Зверев П.Г. // Квантовая электроника. 2019. Т. 49. С. 570.
  5. 5. Mikhailik V.B., Henry S., Kraus H., Solskii I. // Nucl. Instrum. Method Phys. Res. A. 2007. V. 583. P. 350.
  6. 6. Lee S.J., Choi J.H., Danevich F.A. et al. // Astropart. Phys. 2011. V. 34. P 732.
  7. 7. Bosbach D., Rabung T., Brandt F., Fanghanel T. // Radiochim. Acta. 2004. V. 92. P. 639.
  8. 8. Taurines T., Boizot B. // J. Am. Ceram. Soc. 2012. V. 95. P. 1105.
  9. 9. Lin Q., Feng X. // J. Phys.: Condens. Matter. 2003. V. 15. P. 1963.
  10. 10. Chen T., Liu T., Zhang Q. et al. // Nucl. Instrum. Method Phys. Res. A. 2007. V. 575. P. 390.
  11. 11. Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1452.
  12. 12. Gale J.D. // Z. Kristallographie. 2005. B. 220. S. 552.
  13. 13. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1938. V. 34. P. 485.
  14. 14. Александров В.Б., Горбатый Л.В., Илюхин В.В. // Кристаллография. 1968. Т. 13. С. 512.
  15. 15. Bush T.S., Gale J.D., Catlow C.R.A., Battle P.J. // Mater. Chem. 1994. V. 4. P. 831.
  16. 16. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library