RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

EXTRACTION, PURIFICATION, AND CRYSTALLIZATION OF GTPASE ERA FROM STAPHYLOCOCCUS AUREUS

PII
10.31857/S0023476123010137-1
DOI
10.31857/S0023476123010137
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
276-280
Abstract
Protein crystal structure studies are an important tool for drug design. The growth of high-quality crystals suitable for X-ray diffraction is the limiting factor and the bottleneck in obtaining the structural data. Here we report the extraction, purification, and crystallization of the protein GTPase Era from the pathogenic bacterium Staphylococcus aureus. In bacterial cells, GTPase Era acts as a ribosome assembly factor. This enzyme is responsible for the cell growth and division. However, its structure is poorly understood. We obtained crystals of Staphylococcus aureus GTPase Era, which can be used in further structural studies by single-crystal X-ray diffraction analysis.
Keywords
PROTEIN CRYSTAL STRUCTURE X-RAY DIFFRACTION
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Stijn Blot R.N., Vandewoude K., Colardyn F. // N. Engl. J. Med. 1998. V. 339 (27). P. 2025. https://doi.org/10.1056/nejm199812313392716
  2. 2. Jeljaszewicz J., Mlynarczyk G., Mlynarczyk A. // Int. J. Antimicrob. Agents. 2000. V. 16 (4). P. 473. https://doi.org/10.1016/S0924-8579 (00)00289-2
  3. 3. Fierobe L., Decré D., Mùller C. et al. // Clin. Infect. Dis. 1999. V. 29 (5). P. 1231. https://doi.org/10.1086/313454
  4. 4. Shajani Z., Sykes M.T., Williamson J.R. // Annu. Rev. Biochem. 2011. V. 80. P. 501. https://doi.org/10.1146/annurev-biochem-062608-160432
  5. 5. Kaczanowska M., Rydén-Aulin M. // Microbiol. Mol. Biol. Rev. 2007. V. 71 (3). P. 477. https://doi.org/10.1128/MMBR.00013-07
  6. 6. Усачев К.С., Юсупов М.М., Валидов Ш.З. // Биохимия. 2020. Т. 85 (11). С. 1690. https://doi.org/10.1134/S0006297920110115
  7. 7. Stern S., Powers T., Changchien L.I.-M., Noller H.F. // Science. 1989. V. 244 (4906). P. 783. https://doi.org/10.1126/science.2658053
  8. 8. Davis J.H., Williamson J.R. // Philos. Trans. R. Soc. 2017. V. 372 (1716). Art. 20160181. https://doi.org/10.1098/rstb.2016.0181
  9. 9. Bourne H.R. // Philos. Trans. R. Soc. 1995. V. 349 (1329). P. 283. https://doi.org/10.1098/rstb.1995.0114
  10. 10. Tu C., Zhou X., Tropea J. et al. // Proc. Natl. Acad. Sci. U S A. 2009. V. 106 (35). P. 14843. https://doi.org/10.1073/pnas.0904032106
  11. 11. Simon Goto, Akira Muto, Hyouta Himeno // J. Biochem. 2013. V. 153 (5). P. 403. https://doi.org/10.1093/jb/mvt022
  12. 12. Ji X. // Postepy Biochem. 2016. V. 62 (3). P. 335.
  13. 13. Xiaomei Zhou, Howard K. Peters III, Xintian Li et al. // J. Bacteriol. 2020. V. 202. P. 21. https://doi.org/10.1128/JB.00342-20
  14. 14. Ren H., Liang Y., Li R. et al. // Acta Cryst. D. 2004. V. 60. P. 1292. https://doi.org/10.1107/S0907444904010467
  15. 15. Meulenbroek E., Pannu N. // Acta Cryst. F. 2011. V. 68. P. 45. https://doi.org/10.1107/S1744309111045842
  16. 16. Murugova T.N., Vlasov A.V., Ivankov O.I. et al. // J. Optoelectron. Adv. Mater. 2015. V. 17. P. 1397.
  17. 17. Kabsch W. // Xds. Acta Cryst. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  18. 18. Chen X., Chen S.-M., Powell B. et al. // FEBS Lett. 1999. V. 445. P. 425. https://doi.org/10.1016/S0014-5793 (99)00178-7
  19. 19. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  20. 20. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596 (7873). P. 583.
  21. 21. Chen X., Court D.L., Ji X. // PNAS. 1999. V. 15 (96). P. 8396. https://doi.org/10.1073/pnas.96.15.8396
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library