RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

GROWTH, STRUCTURE, AND PHASE BEHAVIOR OF DI-TERT-BUTYL-PARA-TERPHENYL CRYSTALS

PII
10.31857/S0023476123010228-1
DOI
10.31857/S0023476123010228
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
121-130
Abstract
The results of studying the growth of para-terphenyl derivative (4,4"-di-tert-butyl-para-terphenyl (tBu-3P-tBu)) crystals are presented. The solubility of this compound in toluene at 20°С has been established by spectrophotometry. Using the techniques of growth from solutions and physical vapor transport,tBu-3P-tBu single crystals up to 1 cm long have been obtained for the first time. Their structure at 85 K has been interpreted in the triclinic system, sp. gr. P1 (Z = 8), using single-crystal X-ray diffraction. Flat rectangular crystals with the best morphological characteristics have been grown from vapor. The developed face of these crystals exhibits elementary growth steps 1.4 nm high, corresponding to molecular monolayers oriented in the (001) plane. The presence of a polymorphic transition at 229.2°C and mesomorphic liquid crystal phase above the melting temperature (255.6°С) is found.
Keywords
GROWTH STRUCTURE PHASE BEHAVIOR DI-TERT-BUTYL-PARA-TERPHENYL CRYSTALS
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p. https://doi.org/10.1016/C2013-0-01791-4
  2. 2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. 2-е изд. М.: Химия, 1984. 336 с.
  3. 3. Matei C., Hambsch F.J., Oberstedt S. // Nucl. Instrum. Methods Phys. Res. A. 2012. V. 676. P. 135. https://doi.org/10.1016/j.nima.2011.11.076
  4. 4. Liao H.R., Lin Y.J., Chou Y.M. et al. // J. Lumin. 2008. V. 128. P. 1373. https://doi.org/10.1016/j.jlumin.2008.01.006
  5. 5. Gershuni S., Rabinovitz M., Agranat I. et al. // J. Phys. Chem. 1980. V. 84. P. 517. https://doi.org/10.1021/j100442a013
  6. 6. Yemam H.A., Mahl A., Tinkham J.S. et al. // Chem. Eur. J. 2017. V. 23. P. 8921. https://doi.org/10.1002/chem.201700877
  7. 7. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
  8. 8. Pålsson L.O., Nehls B.S., Galbrecht F. et al. // J. Phys. Chem. B. 2010. V. 114. P. 12765. https://doi.org/10.1021/jp1028883
  9. 9. Корешков А.П. Основы аналитической химии. Т. 3. М.: Химия, 1970. 472 с.
  10. 10. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. Т. 66. С. 494. https://doi.org/10.31857/s0023476121030206
  11. 11. Postnikov V.A., Sorokina N.I., Lyasnikova M.S. et al. // Crystals. 2020. V. 10. P. 363. https://doi.org/10.3390/cryst10050363
  12. 12. Nagahara L.A. // J. Vac. Sci. Technol. B. 1994. V. 12. P. 1694. https://doi.org/10.1116/1.587265
  13. 13. Nečas D., Klapetek P. Gwiddion Software: 2.59.
  14. 14. Rigaku Oxford Diffraction: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
  15. 15. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345. https://doi.org/10.1515/zkri-2014-1737
  16. 16. Palatinus L. // Acta Cryst. A. 2004. V. 60. P 604. https://doi.org/10.1107/S0108767304022433
  17. 17. Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
  18. 18. Ландсберг Г.С. Оптика. 7-е изд. М.: ФИЗМАТЛИТ, 2017. 852 с.
  19. 19. Postnikov V.A., Odarchenko Y.I., Iovlev A. V. et al. // Cryst. Growth Des. 2014. V. 14. P. 1726. https://doi.org/10.1021/cg401876a
  20. 20. MercurySoftware: 2021.1.0. CCDC.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library