- PII
- 10.31857/S0023476123010228-1
- DOI
- 10.31857/S0023476123010228
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 121-130
- Abstract
- The results of studying the growth of para-terphenyl derivative (4,4"-di-tert-butyl-para-terphenyl (tBu-3P-tBu)) crystals are presented. The solubility of this compound in toluene at 20°С has been established by spectrophotometry. Using the techniques of growth from solutions and physical vapor transport,tBu-3P-tBu single crystals up to 1 cm long have been obtained for the first time. Their structure at 85 K has been interpreted in the triclinic system, sp. gr. P1 (Z = 8), using single-crystal X-ray diffraction. Flat rectangular crystals with the best morphological characteristics have been grown from vapor. The developed face of these crystals exhibits elementary growth steps 1.4 nm high, corresponding to molecular monolayers oriented in the (001) plane. The presence of a polymorphic transition at 229.2°C and mesomorphic liquid crystal phase above the melting temperature (255.6°С) is found.
- Keywords
- GROWTH STRUCTURE PHASE BEHAVIOR DI-TERT-BUTYL-PARA-TERPHENYL CRYSTALS
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p. https://doi.org/10.1016/C2013-0-01791-4
- 2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. 2-е изд. М.: Химия, 1984. 336 с.
- 3. Matei C., Hambsch F.J., Oberstedt S. // Nucl. Instrum. Methods Phys. Res. A. 2012. V. 676. P. 135. https://doi.org/10.1016/j.nima.2011.11.076
- 4. Liao H.R., Lin Y.J., Chou Y.M. et al. // J. Lumin. 2008. V. 128. P. 1373. https://doi.org/10.1016/j.jlumin.2008.01.006
- 5. Gershuni S., Rabinovitz M., Agranat I. et al. // J. Phys. Chem. 1980. V. 84. P. 517. https://doi.org/10.1021/j100442a013
- 6. Yemam H.A., Mahl A., Tinkham J.S. et al. // Chem. Eur. J. 2017. V. 23. P. 8921. https://doi.org/10.1002/chem.201700877
- 7. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
- 8. Pålsson L.O., Nehls B.S., Galbrecht F. et al. // J. Phys. Chem. B. 2010. V. 114. P. 12765. https://doi.org/10.1021/jp1028883
- 9. Корешков А.П. Основы аналитической химии. Т. 3. М.: Химия, 1970. 472 с.
- 10. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. Т. 66. С. 494. https://doi.org/10.31857/s0023476121030206
- 11. Postnikov V.A., Sorokina N.I., Lyasnikova M.S. et al. // Crystals. 2020. V. 10. P. 363. https://doi.org/10.3390/cryst10050363
- 12. Nagahara L.A. // J. Vac. Sci. Technol. B. 1994. V. 12. P. 1694. https://doi.org/10.1116/1.587265
- 13. Nečas D., Klapetek P. Gwiddion Software: 2.59.
- 14. Rigaku Oxford Diffraction: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
- 15. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. B. 229. S. 345. https://doi.org/10.1515/zkri-2014-1737
- 16. Palatinus L. // Acta Cryst. A. 2004. V. 60. P 604. https://doi.org/10.1107/S0108767304022433
- 17. Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
- 18. Ландсберг Г.С. Оптика. 7-е изд. М.: ФИЗМАТЛИТ, 2017. 852 с.
- 19. Postnikov V.A., Odarchenko Y.I., Iovlev A. V. et al. // Cryst. Growth Des. 2014. V. 14. P. 1726. https://doi.org/10.1021/cg401876a
- 20. MercurySoftware: 2021.1.0. CCDC.