RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

LOCAL ATOMIC ENVIRONMENT OF Zn2+ IONS IN A LOW-CONCENTRATION ZnCl2 AQUEOUS SOLUTION: XANES STUDY

PII
10.31857/S002347612302011X-1
DOI
10.31857/S002347612302011X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
228-233
Abstract
The diverse local environment of zinc ions in a ZnCl2 solution, depending on the symmetry, ligand type, and solution concentration, has been analyzed using the data in the literature. Experimental zinc K-edge XANES spectra in a ZnCl2 aqueous solution with a critically low concentration (10–3 М) have been theoretically analyzed. It is shown that Zn(H2O) complexes with Zn2+ ions in the octahedral coordination environment of water molecules are dominant in this solution.
Keywords
ZnCl2 AQUEOUS SOLUTION XANES STUDY
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Sandstead H.H. // Handbook on the Toxicology of Metals, 4th ed., Elsevier, 2014. P. 1369.
  2. 2. Pipan-Tkalec Z., Drobne D., Jemec A. et al. // Toxicology. 2010. V. 269. P. 198. https://doi.org/10.1016/j.tox.2009.08.004
  3. 3. Kula I., Uğurlu M., Karaoğlu H. et al. // Bioresour. Technol. 2008. V. 99. P. 492. https://doi.org/10.1016/j.biortech.2007.01.015
  4. 4. Yusuff A.S., Lala M.A., Thompson-Yusuff K.A. et al. // S. Afr. J. Chem. Eng. 2022. V. 42. P. 138. https://doi.org/10.1016/j.sajce.2022.08.002
  5. 5. Wen D., Fang Z., He H. et al. // Int. J. Chem. React. Eng. 2018. V. 16. P. 20170256. https://doi.org/10.1515/ijcre-2017-0256
  6. 6. Kruh R.F., Standleyc L. // Inorg. Chem. 1962. V. 1. P. 941.
  7. 7. Eastela J., Giaquintap V., March N.H. et al. // Chem. Phys. 1983. V. 76. P. 125.
  8. 8. Parchment O.G., Vincent M.A., Hillier I.H. // J. Phys. Chem. 1996. V. 100. P. 9689.
  9. 9. Pokhrel N., Lamichhane H.P. // J. Sci. Technol. 2018. V. 22. P. 148. https://doi.org/10.3126/jist.v22i2.19607
  10. 10. Yalovega G.E., Kremennaya M.A. // Crystallography Reports. 2020. V. 65. P. 813. https://doi.org/10.1134/S1063774520060395
  11. 11. Фетисов Г.В. Синхротронное излучение. Методы исследования структуры веществ. М.: Физматлит, 2007. 672 с.
  12. 12. Aziz E.F., Ottosson N., Bonhommeau S. et al. // Phys. Rev. Lett. 2009. V. 102. P. 68103. https://doi.org/10.1103/PhysRevLett.102.06810313
  13. 13. Shi W., Punta M., Bohon J. et al. // Genome Res. 2011. V. 21. P. 898. https://doi.org/10.1101/gr.115097.110
  14. 14. Uchikoshi M., Shinoda K. // Struct. Chem. 2019. V. 30. P. 945. https://doi.org/10.1007/s11224-018-1245-7
  15. 15. D’Angelo P., Zitolo A., Ceccacci F. et al. // J. Chem. Phys. 2011. V. 135. P. 15450. https://doi.org/10.1063/1.3653939
  16. 16. D'Angelo P., Barone V., Chillemi G. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 1958. https://doi.org/10.1021/ja015685x
  17. 17. Dreier P., Rabe P. // J. Phys. Colloq. 1986. V. 47. P. C8-809. https://doi.org/10.1051/jphyscol:19868155
  18. 18. Новикова Н.Н., Якунин С.Н., Ковальчук М.В. и др. // Кристаллография. 2019. Т. 64. № 6. С. 931.
  19. 19. Joly Y. // Phys. Rev. B. 2001. V. 63. P. 125120.
  20. 20. Silber H.B., Simon D., Gaizer F. // Inorg. Chem. 1984. V. 23. P. 2844.
  21. 21. Brugger J.L., Liu W., Etschmann B. et al. // Chem. Geol. 2016. V. 447. P. 219.
  22. 22. Alloteau F., Valbi V., Majérus O. et al. // Glass Atmospheric Alteration: Cultural Heritage, Industrial and Nuclear Glasses. Hermann, 2019. P. 192.
  23. 23. Nelson J. // J. Synchrotron Radiat. 2021. V. 28. P. 1119. https://doi.org/10.1107/S1600577521004033
  24. 24. Walker A., Vratsanos M., Kozawa S. et al. // Soft Matter. 2019. V. 15. P. 7596.
  25. 25. Harris D.J., Brodholt J.P., Harding J.H. et al. // Mol. Phys. 2001. V. 99. P. 825. https://doi.org/10.1080/00268970010015588
  26. 26. Paschina G., Piccaluga G., Pinna G. et al. // J. Chem. Phys. 1983. V. 78. P. 5745.
  27. 27. Takahashi M., Tanida H., Kawauchi S. et al. // J. Synchrotron Radiat. 1999. V. 6. P. 278.
  28. 28. Magini M., Licheri G., Paschina G. et al. // X-ray Diffraction of Ions in Aqueous Solution: Hydration and Complex Formation. CRC Press: Boca Raton, FL. 1988. P. 284.
  29. 29. Paschina G., Piccaluga G., Pinna G. et al. // J. Chem. Phys. 1983. V. 78. P. 5745.
  30. 30. Liu W., Borg S.J., Testemale D. et al. // Geochim. Cosmochim. Acta. 2011. V. 75. P. 1227. https://doi.org/10.1016/j.gca.2010.12.002
  31. 31. Powelld H., Gullidgep M.N., Neilsong W. et al. // Molec. Phys. 1990. V. 71. P. 1107.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library