RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

CRYSTAL AND MOLECULAR STRUCTURE OF THE ISLAND TETRANUCLEAR DIOXOMOLYBDENUM(VI) COMPLEX [MoO2(L1)]4 (H2L1 IS ACETYLACETONE ISONICOTINOYLHYDRAZONE) WITH LARGE INTRA- AND INTERMOLECULAR CHANNELS

PII
10.31857/S0023476123020157-1
DOI
10.31857/S0023476123020157
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
262-267
Abstract
The solvated complex [МоО2(L1)]4dimethylformamide (I) was synthesized. Its structure was determined by X-ray diffraction analysis. The crystal structure is composed of the tetranuclear complexes [МоО2(L1)]4 (Ia) as the structural units lying on crystallographic twofold axes. Both crystallographically independent molybdenum atoms are in a distorted octahedral coordination environment formed by two cis-О(oxo) ligands, two N(L1) atoms of two molecules Ia in trans positions to the О(oxo) ligands, and two О(L1) atoms of one complex molecule in cis positions to О(oxo) and trans to each other. Each (L1)2– ligand is coordinated to two Мо atoms in a tetradentate tridentate-chelating (2О, N) bridging (N) mode. The average bond lengths in complex Iа are as follows: Мо–О(oxo), 1.701 Å; Мо–N(L1), 2.460 (b) and 2.214 Å (c); Мо–О(L1), 1.980 Å. The О(oxo)–МоО–(oxo) bond angle is 105.6°. The ordered dimethylformamide molecule is located in a narrow channel in the structure. The strongly disordered (non-located) solvent molecules (methanol/dimethylformamide/water) occupy wide channels in the structure of I.
Keywords
CRYSTAL AND MOLECULAR STRUCTURE X-RAY DIFFRACTION ANALYSIS
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Kargar H., Kia R., Froozandeh F. et al. // Acta Cryst. E. 2011. V. 67. P. o209. https://doi.org/org/10.1107/S160053681005275X
  2. 2. Kargar H., Kia R., Moghadamm M., Tahir M.N. // Acta Cryst. E. 2011. V. 67. P. o367. https://doi.org/org/10.1107/S1600536811000948
  3. 3. Paciorek P., Szklarzewicz J., Trzewik B. et al. // J. Org. Chem. 2021. V. 86. P. 1649. https://doi.org/10.1021/acs.joc.0c02451
  4. 4. Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. Комплексы переходных металлов с гидразонами. Физико-химические свойства и строение. М.: Наука, 1990. 112 с.
  5. 5. Гарновский А.Д., Васильченко И.С., Гарновский Д.А. Современные аспекты синтеза металлокомплексов. Основные лиганды и методы. Ростов-на-Дону: ЛаПО, 2000. 355 с.
  6. 6. Banße W., Ludwig E., Shilde U., Uhlemann E. // Z. Anorg. Allg. Chem. 1995. B. 621. № 8. S. 1275.
  7. 7. Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. P. 63. https://doi.org/org/10.1016/j.poly.2014.12.017
  8. 8. Bikas R., Darvishvand M., Kuncser V. et al. // Polyhedron. 2020. V. 190. P. 114751. https://doi.org/10.1016/j.poly.2020.114751
  9. 9. Hosseini-Monfared H., Bikas R., Sanchiz J. et al. // Polyhedron. 2013. V. 61. P. 45. https://doi.org/10.1016/j.poly.2013.05.033
  10. 10. Goorchibeygi S., Bikas R., Soleimani M. // J. Mol. Struct. 2022. V. 1250. Pt 1. P. 131774. https://doi.org/10.1016/j.molstruc.2021.131774
  11. 11. Бурлов А.С., Власенко В.Г., Чальцев Б.В. и др. // Координац. химия. 2021. Т. 47. № 7. С. 391. https://doi.org/10.31857/S0132344X2107001X
  12. 12. Hossain S.M., Lakma A., Pradhan R.N. // Dalton Trans. 2017. V. 46. № 37. P. 12612. https://doi.org/10.1039/c7dt02433a
  13. 13. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1732. https://doi.org/10.31857/S0044457X21120151
  14. 14. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. общ. химии. 2022. Т. 92. № 6. С. 954. https://doi.org/10.31857/S0044460X22060142
  15. 15. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  16. 16. Sheldrick G.M. // Acta. Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  17. 17. Spek A.T. // Acta Cryst. C. 2015. V. 71. P. 9.
  18. 18. Vrdoliak V., Mandaric M., Hrenar T. et al. // Cryst. Growth Design. 2019. V. 19. P. 3000. https://doi.org/10.1021./acs.cgd.9b00231
  19. 19. Vrdoliak V., Prugovecki B., Malkovic-Calogovic D. et al. // Cryst. Growth Design. 2013. V. 13. P. 3773. https://doi.org/10.1921/cg400782c
  20. 20. Vrdoliak V., Prugovecli B., Malkovic-Calogovic D. et al. // Cryst. Growth Design. 2010. V. 10. P.1373. https://doi.org/10.1021/cg901382h
  21. 21. Sutton A., Abrahams B.F., Hudson T.A., Robson R. // New. J. Chem. 2020. V. 44. P. 11437. https://doi.org/10.1039/d0nj02413a
  22. 22. McCormick L.J., Abrahams B.F., Boughton B.A. // Inorg. Chem. 2014. V. 53. P. 1721. https://doi.org/10.1021/ic402860r
  23. 23. Nandy M., Shit S., Rizzoli C. et al. // Polyhedron. 2015. V. 88. P. 63.
  24. 24. Сергиенко В.С., Абраменко В.Л., Чураков А.В., Суражская М.Д. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1732. https://doi.org/10.31857/S0044457X21120151
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library