RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Search for New Potential T-Cell and B-Cell Epitopes in the Spike Protein of SARS-CoV-2

PII
10.31857/S0023476123600106-1
DOI
10.31857/S0023476123600106
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
959-970
Abstract
The current epidemiological situation, including the existence of new SARS-CoV-2 virus with a high mutagenicity, requires fundamentally new deadlines for the development of vaccines, which may be achieved only applying modern computing technologies and simulation. Epitopes have been found in the spike protein of the SARS-CoV-2 virus using immunoinformatics methods, and their allergenicity and immunogenecity was predicted. It is shown that a vaccine against SARS-CoV-2 can be designed based on these epitopes.
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses // Nat Microbiol. 2020. V. 5 (4). P. 536. https://doi.org/10.1038/s41564-020-0695-z
  2. 2. Beeching N.J., Fletcher T.E., Flower R. // BMJ Best Practice Coronavirus Disease (COVID-19).
  3. 3. Heymann D.L., Shido N. // Lancet. 2020. V. 395 (10224). P. 542. https://doi.org/10.1016/S0140-6736 (20)30374-3
  4. 4. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, WHO, 2020, 28 January.
  5. 5. Araf Y., Moin A.T., Timofeev V.I. et al. // Front. Immunol. 2022. V. 13. 863234. https://doi.org/10.3389/fimmu.2022.863234
  6. 6. Abass O.A., Timofeev V.I., Sarkar B. et al. // J. Biomolecular Structure and Dynamics. 2021. V. 40 (16). P. 7283. https://doi.org/10.1080/07391102.2021.1896387
  7. 7. Quarleri J., Galvan V., Delpino M.V. // GeroScience. 2022. V. 44 (1). P. 53. https://doi.org/10.1007/s11357-021-00500-4
  8. 8. Gowrisankar A., Priyanka T.M., Banerjee S. // Eur. Phys. J. Plus. 2022. V. 137. P. 100. https://doi.org/10.1140/epjp/s13360-021-02321-y
  9. 9. Yao L., Zhu K. L., Jiang X. L. et al. // Lancet. Infectious Diseases. 2022. V. 22. № 8. P. 1116. https://doi.org/10.1016/S1473-3099 (22)00410-8
  10. 10. Cao Y., Yisimayi A., Jian F. et al. // Nature. 2022. V. 608 (7923). P. 593. https://doi.org/10.1038/s41586-022-04980-y
  11. 11. Gallagher T.M., Buchmeier M.J. // Virology. 2001. V. 279. № 2. P. 371.
  12. 12. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. 424. https://doi.org/10.1186/1471-2105-8-424
  13. 13. Buus S., Lauemoller S.L., Worning P. et al. // Tissue Antigens. 2003. V. 62. № 5. P. 378.
  14. 14. Potocnakova L., Bhide M., Pulzova L.B. // J. Immunol. Res. 2016. 6760830. https://doi.org/10.1155/2016/6760830
  15. 15. Ponomarenko J., Bui H.H., Li W. et al. // BMC Bioinformatics. 2008. V. 9. 514. https://doi.org/10.1186/1471-2105-9-514
  16. 16. Dimitrov I., Bangov I., Flower D.R., Doytchinova I. // J. Mol. Model. 2014. V. 20. 2278. https://doi.org/10.1007/s00894-014-2278-5
  17. 17. Gupta S., Kapoor P., Chaudhary K. et al. // PLoS ONE. 2013 V. 8 (9). № 73957. https://doi.org/10.1371/journal.pone.0073957
  18. 18. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8 (4). https://doi.org/10.1186/1471-2105-8-4
  19. 19. Kudriavtsev A.V., Vakhrusheva A.V., Novoseletsky V.N. et al. // Viruses. 2022. V. 14 (8). 1603. https://doi.org/10.3390/v14081603
  20. 20. Hallgren J., Konstantinos D.T., Pedersen M.D. et al. // bioRxiv. 2022. https://doi.org/10.1101/2022.04.08.487609
  21. 21. Sharma N., Naorem L.D., Jain S., Raghava G.P.S. // Briefings in bioinformatics. 2022. V. 23. № 5. 174. https://doi.org/10.1093/bib/bbac174
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library