- PII
- 10.31857/S0023476123600106-1
- DOI
- 10.31857/S0023476123600106
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 6
- Pages
- 959-970
- Abstract
- The current epidemiological situation, including the existence of new SARS-CoV-2 virus with a high mutagenicity, requires fundamentally new deadlines for the development of vaccines, which may be achieved only applying modern computing technologies and simulation. Epitopes have been found in the spike protein of the SARS-CoV-2 virus using immunoinformatics methods, and their allergenicity and immunogenecity was predicted. It is shown that a vaccine against SARS-CoV-2 can be designed based on these epitopes.
- Keywords
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses // Nat Microbiol. 2020. V. 5 (4). P. 536. https://doi.org/10.1038/s41564-020-0695-z
- 2. Beeching N.J., Fletcher T.E., Flower R. // BMJ Best Practice Coronavirus Disease (COVID-19).
- 3. Heymann D.L., Shido N. // Lancet. 2020. V. 395 (10224). P. 542. https://doi.org/10.1016/S0140-6736 (20)30374-3
- 4. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, WHO, 2020, 28 January.
- 5. Araf Y., Moin A.T., Timofeev V.I. et al. // Front. Immunol. 2022. V. 13. 863234. https://doi.org/10.3389/fimmu.2022.863234
- 6. Abass O.A., Timofeev V.I., Sarkar B. et al. // J. Biomolecular Structure and Dynamics. 2021. V. 40 (16). P. 7283. https://doi.org/10.1080/07391102.2021.1896387
- 7. Quarleri J., Galvan V., Delpino M.V. // GeroScience. 2022. V. 44 (1). P. 53. https://doi.org/10.1007/s11357-021-00500-4
- 8. Gowrisankar A., Priyanka T.M., Banerjee S. // Eur. Phys. J. Plus. 2022. V. 137. P. 100. https://doi.org/10.1140/epjp/s13360-021-02321-y
- 9. Yao L., Zhu K. L., Jiang X. L. et al. // Lancet. Infectious Diseases. 2022. V. 22. № 8. P. 1116. https://doi.org/10.1016/S1473-3099 (22)00410-8
- 10. Cao Y., Yisimayi A., Jian F. et al. // Nature. 2022. V. 608 (7923). P. 593. https://doi.org/10.1038/s41586-022-04980-y
- 11. Gallagher T.M., Buchmeier M.J. // Virology. 2001. V. 279. № 2. P. 371.
- 12. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. 424. https://doi.org/10.1186/1471-2105-8-424
- 13. Buus S., Lauemoller S.L., Worning P. et al. // Tissue Antigens. 2003. V. 62. № 5. P. 378.
- 14. Potocnakova L., Bhide M., Pulzova L.B. // J. Immunol. Res. 2016. 6760830. https://doi.org/10.1155/2016/6760830
- 15. Ponomarenko J., Bui H.H., Li W. et al. // BMC Bioinformatics. 2008. V. 9. 514. https://doi.org/10.1186/1471-2105-9-514
- 16. Dimitrov I., Bangov I., Flower D.R., Doytchinova I. // J. Mol. Model. 2014. V. 20. 2278. https://doi.org/10.1007/s00894-014-2278-5
- 17. Gupta S., Kapoor P., Chaudhary K. et al. // PLoS ONE. 2013 V. 8 (9). № 73957. https://doi.org/10.1371/journal.pone.0073957
- 18. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8 (4). https://doi.org/10.1186/1471-2105-8-4
- 19. Kudriavtsev A.V., Vakhrusheva A.V., Novoseletsky V.N. et al. // Viruses. 2022. V. 14 (8). 1603. https://doi.org/10.3390/v14081603
- 20. Hallgren J., Konstantinos D.T., Pedersen M.D. et al. // bioRxiv. 2022. https://doi.org/10.1101/2022.04.08.487609
- 21. Sharma N., Naorem L.D., Jain S., Raghava G.P.S. // Briefings in bioinformatics. 2022. V. 23. № 5. 174. https://doi.org/10.1093/bib/bbac174