ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Предварительное рентгеновское исследование кристаллов, полученных при сокристаллизации гипоксантин-гуанинфосфорибозилтрансферазы из Escherichia coli и производных пиразин-2-карбоксамида

Код статьи
10.31857/S002347612360012X-1
DOI
10.31857/S002347612360012X
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 6
Страницы
854-858
Аннотация
Создан высокоэффективный штамм-продуцент Escherichia coli C3030/pET23d+-EcHGPRT, позволяющий получать рекомбинантную гипоксантин-гуанинфосфорибозилтрансферазу из E. coli (EcHGPRT) в растворимой форме. Разработана методика выделения и очистки рекомбинантного белка. Определена удельная активность в отношении природного субстрата и производных пиразин-2-карбоксамида. Методом встречной диффузии в капилляре выращены кристаллы комплексов EcHGPRT с 3-гидроксипиразин-2-карбоксамидом (T-1105) и с 6-фтор-3-гидроксипиразин-2-карбоксамидом (T-705), пригодные для рентгеноструктурного исследования. Дифракционные наборы до разрешения соответственно 2.4 и 2.5 Å собраны на синхротроне ESRF (Франция, станция ID23-1) при температуре 100 K. Кристаллы относятся к пр. гр. P3(1)21, в независимой части ячейки содержатся две молекулы фермента.
Ключевые слова
Дата публикации
15.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Hucke F.I.L., Bestehorn-Willmann M., Bassetto M. et al. // Virus Genes. 2022. V. 58 (3). P. 188. https://doi.org/10.1007/s11262-022-01892-x
  2. 2. De Vleeschauwer A.R., Lefebvre D.J., Willems T. et al. // Transbound. Emerg. Dis. 2016. V. 63 (2). P. e205. https://doi.org/10.1111/tbed.12255
  3. 3. Hayden F.G., Shindo N. // Curr. Opin. Infect. Dis. 2019. V. 32 (2). P. 176. https://doi.org/10.1097/QCO.0000000000000532
  4. 4. Delang L., Abdelnabi R., Neyts J. // Antiviral Res. 2018. V. 153. P. 85. https://doi.org/10.1016/j.antiviral.2018.03.003
  5. 5. De Clercq E., Li G. // Clin. Microbiol. Rev. 2016. V. 29 (3). P. 695. https://doi.org/10.1128/CMR.00102-15
  6. 6. Furuta Y., Takahashi K., Shiraki K. et al. // Antiviral Res. 2009. V. 82 (3). P. 95. https://doi.org/10.1016/j.antiviral.2009.02.198
  7. 7. Furuta Y., Komeno T., Nakamura T. // Proc. Jpn. Acad. B. Phys. Biol. Sci. 2017. V. 93 (7). P. 449. https://doi.org/10.2183/pjab.93.027
  8. 8. Lu J.W., Chen Y.C., Huang C.K. et al. // Antiviral Res. 2021. V. 195 P. 105188. https://doi.org/10.1016/j.antiviral.2021.105188
  9. 9. Furuta Y., Takahashi K., Fukuda Y. et al. // Antimicrob. Agents Chemother. 2002. V. 46 (4). P. 977. https://doi.org/10.1128/AAC.46.4.977-981.2002
  10. 10. Konstantinova I.D., Andronova V.L., Fateev I.V., Esipov R.S. // Acta Naturae. 2022. V. 14 (2). P. 16. https://doi.org/10.32607/actanaturae.11652
  11. 11. Negru P.A., Radu A.F., Vesa C.M. et al. // Biomed. Pharmacother. 2022. V. 147. P. 112700. https://doi.org/10.1016/j.biopha.2022.112700
  12. 12. Hung D.T., Ghula S., Aziz J.M.A. et al. // Int. J. Infect. Dis. 2022. V. 120. P. 217. https://doi.org/10.1016/j.ijid.2022.04.035
  13. 13. Garcia-Lledo A., Gomez-Pavon J., Gonzalez Del Castillo J. et al. // Rev. Esp. Quimioter. 2022. V. 35 (2). P. 115. https://doi.org/10.37201/req/158.2021
  14. 14. Naesens L., Guddat L.W., Keough D.T. et al. // Mol. Pharmacol. 2013. V. 84 (4). P. 615. https://doi.org/10.1124/mol.113.087247
  15. 15. Sangawa H., Komeno T., Nishikawa H. et al. // Antimicrob. Agents Chemother. 2013. V. 57 (11). P. 5202. https://doi.org/10.1128/AAC.00649-13
  16. 16. Shannon A., Selisko B., Le N.T. et al. // Nat. Commun. 2020. V. 11 (1). P. 4682. https://doi.org/10.1038/s41467-020-18463-z
  17. 17. Eads J.C., Scapin G., Xu Y. et al. // Cell. 1994. V. 78 (2). V. 325. https://doi.org/10.1016/0092-8674 (94)90301-8
  18. 18. Schumacher M.A., Carter D., Roos D.S. et al. // Nat. Struct. Biol. 1996. V. 3 (10). P. 881. https://doi.org/10.1038/nsb1096-881
  19. 19. Guddat L.W., Vos S., Martin J.L. et al. // Protein Sci. 2002. V. 11 (7). P. 1626. https://doi.org/10.1110/ps.0201002
  20. 20. Shi W., Li C.M., Tyler P.C. et al. // Biochemistry. 1999. V. 38 (31). P. 9872. https://doi.org/10.1021/bi990664p
  21. 21. Focia P.J., Craig 3rd S.P., Nieves-Alicea R. et al. // Biochemistry. 1998. V. 37 (43). P. 15066. https://doi.org/10.1021/bi981052s
  22. 22. Shi W., Munagala N.R., Wang C.C. et al. // Biochemistry. 2000. V. 39 (23). P. 6781. https://doi.org/10.1021/bi000128t
  23. 23. Monzani P.S., Trapani S., Thiemann O.H., Oliva G. // BMC Struct. Biol. 2007. V. 7 (59). https://doi.org/10.1186/1472-6807-7-59
  24. 24. Takahashi S., Tsurumura T., Aritake K. et al. // Acta Cryst. F. 2010. V. 66 (7). P. 846. https://doi.org/10.1107/S1744309110020828
  25. 25. Battye T.G., Kontogiannis L., Johnson O. et al. // Acta Cryst. D. 2011. V. 67 (4). P. 271. https://doi.org/10.1107/S0907444910048675
  26. 26. Huchting J., Winkler M., Nasser H., Meier C. // ChemMedChem. 2017. V. 12 (9). P. 652. https://doi.org/10.1002/cmdc.201700116
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека