RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Decomposition of Small-Angle Scattering Profiles from Two Conformational States of 3-Isopropylmalate Dehydrogenase Using Evolving Factor Analysis

PII
10.31857/S0023476123600155-1
DOI
10.31857/S0023476123600155
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
946-950
Abstract
The separation of two conformational states of 3-isopropylmalate dehydrogenase molecules from Thermus thermophilus in solution on a gel chromatographic column, attached to a sample cell of a small-angle X-ray scattering synchrotron beamline, has been simulated. The scattering intensity profiles from the open and closed forms of the enzyme molecules were restored by evolving factor analysis (EFA) using the synthetic data set with added Poisson noise at the relative level of 3–5%. Thus, the efficiency of the EFA algorithm is confirmed in the case of two-component mixtures consisting of particles with the same molecular masses.
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Svergun D.I., Koch M.H.J., Timmins P.A., May R.P. Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, 2013. 358 p.
  2. 2. Herranz-Trillo F., Groenning M., van Maarschalkerweerd A. et al. // Structure. 2017. V. 25. P. 5. https://doi.org/10.1016/j.str.2016.10.013
  3. 3. Keller H.R., Massart D.L. // Chemom. Intell. Lab. Syst. 1992. V. 12. P. 209. https://doi.org/10.1016/0169-7439 (92)80002-L
  4. 4. Hopkins J.B., Gillilan R.E., Skou S.J. // J. Appl. Cryst. 2017. V. 50. P. 1545. https://doi.org/10.1107/S1600576717011438
  5. 5. Konarev P.V., Graewert M.A., Jeffries C.Y. et al. // Protein Sci. 2022. V. 31. P. 269. https://doi.org/10.1002/pro.4237
  6. 6. Panjkovich A., Svergun D.I. // Bioinformatics. 2018. V. 34. P. 1944. https://doi.org/10.1093/bioinformatics/btx846
  7. 7. Konarev P.V., Volkov V.V. // Physics of Atomic Nuclei. 2022. V. 85. P. 2127. https://doi.org/10.1134/S1063778822090198
  8. 8. Hayashi-Iwasaki Y., Oshima T. // Methods Enzymol. 2000. V. 324. P. 301. https://doi.org/10.1016/s0076-6879 (00)24240-7
  9. 9. Graczer E., Merlin A., Singh R.K. et al. // Mol. Biosyst. 2011. V. 7. P. 1646. https://doi.org/10.1039/C0MB00346H
  10. 10. Pallo A., Olah J., Graczer E. et al. // FEBS J. 2014. V. 281. P. 5063. https://doi.org/10.1111/febs.13044
  11. 11. Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
  12. 12. Graczer E., Konarev P.V., Szimler. T. et al. // FEBS Lett. 2011. V. 585. P. 3297. https://doi.org/10.1016/j.febslet.2011.09.013
  13. 13. Golub G.H., Reinsch C. // Numer. Math. 1970. V. 14. P. 403. https://doi.org/10.1007/bf02163027
  14. 14. Ahrens J.H., Dieter U. // ACM Trans Math Software. 1982. V. 8. P. 163. https://doi.org/10.1145/355993.355997
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library