ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Инструментальная линия двухкристального спектрометра в Брэгг–Брэгг-геометрии с учетом зависимости коэффициента поглощения от длины волны нейтронов

Код статьи
10.31857/S0023476123600180-1
DOI
10.31857/S0023476123600180
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 4
Страницы
531-535
Аннотация
Получено аналитическое выражение для инструментальной линии двухкристального спектрометра, не требующее ограничения на характер зависимости сечения поглощения от длины волны. Рассчитана модельная инструментальная линия (кривая качания) для спектрометрической схемы Брэгг–Брэгг на примере кристалла InSb в области слабой зависимости сечения поглощения от длины волны и в области длин волн, близких к резонансу поглощения.
Ключевые слова
Дата публикации
15.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
13

Библиография

  1. 1. Compton A., Allison S. X-rays in theory and experiment. New York: D. Van Nostrand Company. Inc. 1935. https://doi.org/10.1148/25.5.640
  2. 2. Пинскер З.Г. Рентгеновская кристаллооптика. М.: Наука,1982.
  3. 3. Authier A. Dynamical theory of X-ray diffraction. IUCr. Oxford Science. Oxford. U.K. 2001. https://doi.org/10.1107/97809553602060000569
  4. 4. Абов Ю.Г., Елютин Н.О., Тюлюсов А.Н. // Ядерная физика. 2002. Вып. 65. С. 1989. https://doi.org/10.1134/1.1522085
  5. 5. Willis B.T.M. // Acta Cryst. B. 1960. V. 13. P. 763. https://doi.org/10.1107/S0365110X60001849
  6. 6. Szabo C.I., Cline J.P., Henins A. et al. // J. Res. Natl. Inst. Stand. Technol. 2021. V. 126. P. 126049. https://doi.org/10.6028/jres.126.049
  7. 7. Dolzhenkova E., Babenko G., Voronov A. et al. // Acta Phys. Pol. A. 2022. V. 141. https://doi.org/10.12693/aphyspola.141.41
  8. 8. Bragg W.H., Bragg W.L. // P. R. Soc. Lond. A. 1913. V. 88. P. 428. https://doi.org/10.1098/rspa.1913.0040
  9. 9. Borrmann G. // Physik Z. 1941. B. 42. S. 157.
  10. 10. Knowles J.W. // Acta Cryst. 1956. V. 9. P. 61. https://doi.org/10.1107/S0365110X56000115
  11. 11. Шильштейн С.Ш., Соменков В.А. // Кристаллография. 1975. Т. 20. Вып. 5. С. 1096.
  12. 12. Zippel D., Kleinstuck K., Schulze G.E.R. // Phys. Lett. 1964. V. 8. P. 241.
  13. 13. Каган Ю.М., Афанасьев А.М. // ЖЭТФ. 1966. Т. 49. Вып. 5. С. 1504.
  14. 14. Вежлев Е.О., Воронин В.В., Кузнецов И.А. и др. // Письма в ЖЭТФ. 2012. Т. 96. Вып. 1. С. 3. https://doi.org/10.1134/S0021364012130127
  15. 15. Абов Ю.Г., Елютин Н.О., Львов Д.В., Тюлюсов А.Н. // Ядерная физика. 2019. Т. 82. Вып. 4. https://doi.org/10.1134/S0044002719040032
  16. 16. Абов Ю.Г. // Успехи физ. наук. 1996. Вып. 166. С. 949. https://doi.org/10.3367/UFNr.0166.199609d.0949
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека