- PII
- 10.31857/S0023476123600301-1
- DOI
- 10.31857/S0023476123600301
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 6
- Pages
- 922-925
- Abstract
- Crystals of the enzyme purine nucleoside phosphorylase from the extremophilic bacterium Halomonas Chromatireducens AGD 8-3, suitable for X-ray diffraction, were grown by the vapor-diffusion method. The X-ray diffraction data were collected from these crystals at the Belok beamline of the Kurchatov synchrotron radiation source (National Research Centre “Kurchatov Institute”) at 100 K to 1.80 Å resolution. The X-ray diffraction data were processed in the space groups P1, P2, P21, and P622. The structure was solved by the molecular replacement method taking into account the twinning in the space groups P21 and P1 with one and two hexamers of the enzyme per asymmetric unit, respectively.
- Keywords
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Ealick S.E., Rule S.A., Carter D.C. et al. // J. Biol. Chem. 1990. V. 265. P. 1812. https://doi.org/10.1016/S0021-9258 (19)40090-2
- 2. Mao C., Cook W.J., Zhou M. et al. // Structure. 1997. V. 5. P. 1373. https://doi.org/10.1016/S0969-2126 (97)00287-6
- 3. Krenitsky T.A., Koszalka G.W., Tuttle J.V. // Biochemistry. 1981. V. 20 (12). P. 3615. https://doi.org/10.1021/bi00515a048
- 4. Bennett E.M., Li C., Allan P.W. et al. // J. Biol. Chem. 2003. V. 278. P. 47110. https://doi.org/10.1074/jbc.M304622200
- 5. Ducati R.G., Santos D.S., Basso L.A. // Arch. Biochem. Biophys. 2009. V. 486. P. 155. https://doi.org/10.1016/j.abb.2009.04.011
- 6. Михайлопуло И.А., Мирошников А.И. // Acta Naturae. 2010. Т. 2. № 2. С. 36. https://doi.org/10.32607/20758251-2010-2-2-36-58
- 7. Nannemann D.P., Kaufmann K.W., Meiler J. et al. // Protein Eng. Des. Sel. 2010. V. 23. P. 607. https://doi.org/10.1093/protein/gzq033
- 8. Xie X., Xia J., He K. et al. // Biotechnol. Lett. 2011. V. 33. P. 1107. https://doi.org/10.1007/s10529-011-0535-6
- 9. Liekens S., De Clercq E., Neyts J. // Biochem. Pharmacol. 2001. V. 61. № 3. P. 253. https://doi.org/10.1016/s0006-2952 (00)00529-3
- 10. Carmeliet P. // Nature. 2005. V. 438. № 7070. P. 932. https://doi.org/10.1038/nature04478
- 11. Furukawa T., Tabata S., Yamamoto M. et al. // Pharmacol. Res. 2018. V. 132. P. 15 https://doi.org/10.1016/j.phrs.2018.03.019
- 12. Pant P., Pathak A., Jayaram B. // J. Phys. Chem. B. 2021. V. 125. P. 2856. https://doi.org/10.1021/acs.jpcb.0c10553
- 13. Madrid D.C., Ting L.-M., Waller K.L. et al. // J. Biol. Chem. 2008. V. 283. P. 35899. https://doi.org/10.1074/jbc.M807218200
- 14. Myers L.A., Hershfield M.S., Neale W.T. et al. // J. Pediatr. 2004. V. 145. P. 710. https://doi.org/10.1016/j.jpeds.2004.06.075
- 15. Погосян Л.Г., Нерсесова Л.С., Газарянц М.Г. и др. // Биомед. химия. 2011. Т. 57. № 5. С. 526. https://doi.org/10.18097/PBMC20115705526
- 16. Антипов А.Н., Мордкович Н.Н., Хижняк Т.В. и др. // Прикл. биохим. микробиол. 2020. Т. 56. № 1. С. 45. https://doi.org/10.31857/S055510992001002X
- 17. Шаповалова А.А., Хижняк Т.В., Турова Т.П. и др. // Микробиология. 2009. Т. 78. № 1. С. 117. https://doi.org/10.1134/S0026261709010135
- 18. Мордкович Н.Н., Манувера В.А., Вейко В.П. и др. // Биотехнология. 2012. № 1. С. 21.
- 19. Kabsch W. // Acta. Cryst. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
- 20. Murshudov G.N., Skubák P., Lebedev A.A. et al. // Acta Cryst. D. 2011. V. 67. P. 355. https://doi.org/10.1107/S0907444911001314