RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Effect of Microgravity on the Crystallization of Cardiotoxin from the Venom of Spectacled Cobra Naja naja

PII
10.31857/S0023476123600465-1
DOI
10.31857/S0023476123600465
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
902-906
Abstract
Cardiotoxins, which belong to the family of three-finger toxins, are the main components of cobra venom. They exhibit various types of biological activity, including antimicrobial and cytotoxic against cancer cells. Data on the minimal structural differences between individual toxins are necessary for understanding the molecular mechanisms of their action. This information can be obtained by high-resolution X-ray diffraction analysis. The influence of microgravity on the crystal packing and diffraction quality of crystals of cardiotoxin from cobra Naja naja has been investigated. Cardiotoxin crystals, which were grown on the International Space Station, provided maximally high resolution for the structure of this toxin. Protein crystallized extremely in the hexagonal space group, whereas more than half of crystals grown under laboratory conditions belonged to the orthorhombic system.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Khalil A., Elesawy B.H., Ali T.M. et al. // Molecules. 2021. V. 26. P. 4941. https://doi.org/10.3390/molecules26164941
  2. 2. Dubovskii P.V., Efremov R.G. // Expert Rev. Proteomics. 2018. V. 15. P. 873. https://doi.org/10.1080/14789450.2018.1537786
  3. 3. Kalita B., Utkin Y.N., Mukherjee A.K. // Toxins (Basel). 2022. V. 14. P. 839. https://doi.org/10.3390/toxins14120839
  4. 4. Joubert F.J. // Eur. J. Biochem. 1977. V. 74. P. 387. https://doi.org/10.1111/j.1432-1033.1977.tb11403.x
  5. 5. Gayatri S., Gorai B., Sivaraman T. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. P. 936.
  6. 6. Konshina A.G., Dubovskii P.V., Efremov R.G. // Curr. Protein Pept. Sci. 2012. V. 13 (6). P. 570.
  7. 7. Дубовский П.В., Уткин Ю.Н. // Acta Naturae. 2014. Т. 6. № 3. С. 12.
  8. 8. Chien K.Y., Chiang C.M., Hseu Y.C. // J. Biol. Chem. 1994. V. 269. P. 14473.
  9. 9. Dubovskii P.V., Ignatova A.A., Alekseeva A.S. // Toxins. 2022. V. 15. P. 6. https://doi.org/10.3390/toxins15010006
  10. 10. Dubovskii P.V., Dubova K.M., Bourenkov G. et al. // Toxins. 2022. V. 14. P. 149. https://doi.org/10.3390/toxins14020149
  11. 11. Luna A., Meisel J., Hsu K. et al. // NPJ Microgravity. 2020. V. 6. P. 12. https://doi.org/10.1038/s41526-020-0102-3
  12. 12. Shabalin I.G., Serov A.E., Skirgello O.E. et al. // Crystallography Reports. 2010. V. 55 P. 806. https://doi.org/10.1134/S1063774510050159
  13. 13. Timofeev V., Samygina V. // Crystals. 2022. V. 13. P. 71. https://doi.org/10.3390/cryst13010071
  14. 14. Esposito L., Sica F., Sorrentino G. et al. // Acta Cryst. D. 1998. V. 54. P. 386. https://doi.org/10.1107/s0907444997011992
  15. 15. Dubova K.M., Sokolov A.V., Gorbunov N.P. et al. // Crystallography Reports. 2018. V. 63. P. 951. https://doi.org/10.1134/S1063774518060111
  16. 16. Tanaka H., Inaka K., Sughiyama Sh. // J. Synchrotron Rad. 2004. V. 11. P. 45. https://doi.org/10.1107/S0909049503023446
  17. 17. Takahashi S., Tsurumura T., Aritake K. et al. // Acta Cryst. F. 2010. V. 66. P. 846. https://doi.org/10.1107/S1744309110020828
  18. 18. Boyko K.M., Timofeev V.I., Samygina V.R. et al. // Crystallography Reports. 2016. V. 61. № 5. P. 718. https://doi.org/10.1134/S1063774516050059
  19. 19. Kabsch W. // Acta Cryst. D. 2010. V. 66. P. 133. https://doi.org/10.1107/S0907444909047374
  20. 20. Evans P.R., Murshudov G.N. // Acta Cryst. D. 2013. V. 69. P. 1204. https://doi.org/10.1107/S0907444913000061
  21. 21. Agirre J., Atanasova M., Bagdonas H. et al. // Acta. Cryst. D. 2023. V. 79. P. 449. https://doi.org/10.1107/ S2059798323003595
  22. 22. Schrödinger L., DeLano W. 2020. PyMOL. http://www.pymol.org/pymol
  23. 23. Chruszcz M., Potrzebowski W., Zimmerman M.D. et al. // Protein Sci. 2008. V. 17. P. 623. http://www.proteinscience.org/cgi/doi/ 10.1110/ps.073360508
  24. 24. Shabalin I.G., Tikhonova T.V., Polyakov K.M. et al. // EMBL Annual. 2007. Rep. 2. P. 109.
  25. 25. Eistrikh-Heller P.A., Rubinsky S.V., Samygina V.R. et al. // Crystallography Reports. 2021. V. 66. P. 777. https://doi.org/10.1134/S1063774521050059
  26. 26. Inaka K., Takahashi S., Aritake K. et al. // Cryst. Growth Des. 2011. V. 11. P. 2107. https://doi.org/10.1021/cg101370v
  27. 27. Rahman R.N., Ali M.S., Leow T.C. et al. // Gravitational and Space Biology. 2010. V. 23. P. 89.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library