- PII
- 10.31857/S0023476123600672-1
- DOI
- 10.31857/S0023476123600672
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 6
- Pages
- 894-901
- Abstract
- Previous studies of the spatial structure of the guest–host complexes of macrocyclic cavitands cucurbiturils with a number of nitroxyl radicals by ESR, NMR, and crystallographic methods showed that, in aqueous solutions containing a number of nitroxyl radicals as guest molecules, ordered aggregates in the form of an equilateral triangle, with three guest–host monocomplexes located in its vertices, may arise. We performed experiments on small-angle X-ray scattering of aqueous solutions of guest–host cucurbit[8]uril complexes with a stable nitroxyl radical (protonated tempoamine) and, based on the experimental results, carried out ab initio modeling of the shape of aggregates of complexes in the natural state in solution. The search for models of the shape of aggregates was performed either using no additional information about their structure or assuming the presence of a threefold axis. ESR is applied as an independent method for studying the aggregation of complexes in solution. It is shown that the shape of the particles constituting complexes at high cavitand and guest concentrations in an aqueous solution is close in its parameters to an equilateral triangle, which is in agreement with the known crystallographic and ESR data.
- Keywords
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Lee J.W., Samal S., Selvapalam N. et al. // Acc. Chem. Res. 2003. V. 36. № 8. P. 621. https://doi.org/10.1021/ar020254k
- 2. Kim J., Jung In-Sun, Kim Soo-Young et al. // J. Am. Chem. Soc. 2000. V. 122. № 3. P. 540. https://doi.org/10.1021/ja993376p
- 3. Gerasko O.A., Samsonenko D.G., Fedin V.P. // Russian Chemical Reviews. 2002. V. 71. № 9. P. 741. https://doi.org/10.1070/RC2002v071n09ABEH000748
- 4. Huang Z., Ke Qin, Geng Deng et al. // Langmuir. 2016. V. 32. P. 12352. https://doi.org/10.1021/acs.langmuir.6b01709
- 5. Liu S., Ruspic C., Mukhopadhyay P. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 15959. https://doi.org/10.1021/ja055013x
- 6. Kim K., Selvapalam N., Young Ho Ko et al. // Chem. Soc. Rev. 2007. V. 36. P. 267. https://doi.org/10.1039/b603088m
- 7. Gonzalez C.A.M. Cucurbiturils as Molecular Containers: The Mechanism of Complexation of Small Guests, the Effects of the Inclusion on their Photophysical Properties, and Potential Applications. PhD Thesis. Bremen: International University Bremen, 2003. 161 p. https://d-nb.info/1035266601/34
- 8. Hang Conga H., Qian-Jiang Zhua, Sai-Feng Xuea et al. // Chin. Sci. Bull. 2010. V. 55. P. 3633. https://doi.org/10.1007/s11434-010-4146-8
- 9. Lagona J., Mukhopadhyay O., Chakrabarti S., Isaacs L. // Angew. Chem. Int. Ed. 2005. V. 44. P. 4844. https://doi.org/10.1002/anie.200460675
- 10. Walker S., Oun R., McInnes F.J., Wheate N.J. // Isr. J. Chem. 2011. V. 5–6. P. 616. https://doi.org/10.1002/ijch.201100033
- 11. Assaf K.I., Florea M., Antony J. et al. // J. Phys. Chem. B. 2017. V. 121. № 49. P. 11144. https://doi.org/10.1021/acs.jpcb.7b09175
- 12. Dang D.T. // Front Chem. 2022. V. https://doi.org/10. 829312. https://doi.org/10.3389/fchem.2022.829312
- 13. Di Costanzo L., Geremia S. // Molecules. 2020. V. 25. 3555. https://doi.org/10.3389/10.3390/molecules25153555
- 14. Dang D.T., Bosmans R.P.G., Moitzi C. et al. // Org. Biomol. Chem. 2014. V. 12. P. 9341. https://doi.org/10.1039/c4ob01729c
- 15. De Oliveira O.V., da Silva Gonçalves A., de Almeida N.E.C. // J. Biomol. Struct. Dyn. 2021. https://doi.org/10.1080/07391102.2021.1932600
- 16. Zhang S. Synthesis of Mono–Functionalized Cucurbit[n]urils and Exploration of their Applications. PhD thesis. Jacobs Univ., Department of Life Sciences and Chemistry. 2019. 124 p. https://d-nb.info/1190888130/34
- 17. Day A., Arnold A.P., Blanch R.J., Snushall B. // J. Org. Chem. 2001. V. 66. P. 8094. https://doi.org/10.1021/jo015897c
- 18. Wheate N.J., Kumar P.G.A., Torres A.M. et al. // J. Phys. Chem. B. 2008. V. 112. P. 2311. https://doi.org/10.1021/jp709847p
- 19. Biedermann F., Vendruscolo M., Scherman O.A. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14879. https://doi.org/10.1021/ja407951x
- 20. Bardelang D., Udachin K.A., Leek D.M. et al. // Cryst. Growth Des. 2011. V. 11. P. 5598. https://doi.org/10.1021/cg201173j
- 21. Bardelang D., Banaszak K., Karoui H. et al. // J. Am. Chem. Soc. 2009. V. 13. P. 5402. https://doi.org/10.1021
- 22. Mileo E., Mezzina E., Grepioni F. et al. // Chem. Eur. J. 2009. V. 15. P. 7859. https://doi.org/10.1002/chem.200802647
- 23. Jayaraj N., Porel M., Ottaviani M.F. et al. // Langmuir. 2009. V. 25. P. 13820. https://doi.org/10.1021/la9020806
- 24. Ouari O., Bardelang D. // Isr. J. Chem. 2018. V. 58. https://doi.org/10.1002/ijch.201700115
- 25. Лившиц В.А., Мешков Б.Б., Габидинова Р.Ф. и др.// Химия высоких энергий. 2018. Т. 52. С. 140. https://doi.org/10.7868/S0023119718020096
- 26. Могилевский Л.Ю., Дембо А.Т., Свергун Д.И., Фейгин Л.А. // Кристаллография. 1984. Т. 29. Вып. 3. С. 587.
- 27. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
- 28. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, 1987. 321 p.
- 29. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
- 30. Волков В.В. // Кристаллография. 2021. Т. 66. № 5. С. 796. https://doi.org/10.31857/S0023476121050234
- 31. Svergun D.I. // Biophys. J. 1999. V. 76. P. 2879.
- 32. Svergun D. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
- 33. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779