RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Ab Initio Shape of Supramolecular Complexes of Cucurbit[8]uril in Solution Found from Small-Angle X-ray Scattering Data

PII
10.31857/S0023476123600672-1
DOI
10.31857/S0023476123600672
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
894-901
Abstract
Previous studies of the spatial structure of the guest–host complexes of macrocyclic cavitands cucurbiturils with a number of nitroxyl radicals by ESR, NMR, and crystallographic methods showed that, in aqueous solutions containing a number of nitroxyl radicals as guest molecules, ordered aggregates in the form of an equilateral triangle, with three guest–host monocomplexes located in its vertices, may arise. We performed experiments on small-angle X-ray scattering of aqueous solutions of guest–host cucurbit[8]uril complexes with a stable nitroxyl radical (protonated tempoamine) and, based on the experimental results, carried out ab initio modeling of the shape of aggregates of complexes in the natural state in solution. The search for models of the shape of aggregates was performed either using no additional information about their structure or assuming the presence of a threefold axis. ESR is applied as an independent method for studying the aggregation of complexes in solution. It is shown that the shape of the particles constituting complexes at high cavitand and guest concentrations in an aqueous solution is close in its parameters to an equilateral triangle, which is in agreement with the known crystallographic and ESR data.
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Lee J.W., Samal S., Selvapalam N. et al. // Acc. Chem. Res. 2003. V. 36. № 8. P. 621. https://doi.org/10.1021/ar020254k
  2. 2. Kim J., Jung In-Sun, Kim Soo-Young et al. // J. Am. Chem. Soc. 2000. V. 122. № 3. P. 540. https://doi.org/10.1021/ja993376p
  3. 3. Gerasko O.A., Samsonenko D.G., Fedin V.P. // Russian Chemical Reviews. 2002. V. 71. № 9. P. 741. https://doi.org/10.1070/RC2002v071n09ABEH000748
  4. 4. Huang Z., Ke Qin, Geng Deng et al. // Langmuir. 2016. V. 32. P. 12352. https://doi.org/10.1021/acs.langmuir.6b01709
  5. 5. Liu S., Ruspic C., Mukhopadhyay P. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 15959. https://doi.org/10.1021/ja055013x
  6. 6. Kim K., Selvapalam N., Young Ho Ko et al. // Chem. Soc. Rev. 2007. V. 36. P. 267. https://doi.org/10.1039/b603088m
  7. 7. Gonzalez C.A.M. Cucurbiturils as Molecular Containers: The Mechanism of Complexation of Small Guests, the Effects of the Inclusion on their Photophysical Properties, and Potential Applications. PhD Thesis. Bremen: International University Bremen, 2003. 161 p. https://d-nb.info/1035266601/34
  8. 8. Hang Conga H., Qian-Jiang Zhua, Sai-Feng Xuea et al. // Chin. Sci. Bull. 2010. V. 55. P. 3633. https://doi.org/10.1007/s11434-010-4146-8
  9. 9. Lagona J., Mukhopadhyay O., Chakrabarti S., Isaacs L. // Angew. Chem. Int. Ed. 2005. V. 44. P. 4844. https://doi.org/10.1002/anie.200460675
  10. 10. Walker S., Oun R., McInnes F.J., Wheate N.J. // Isr. J. Chem. 2011. V. 5–6. P. 616. https://doi.org/10.1002/ijch.201100033
  11. 11. Assaf K.I., Florea M., Antony J. et al. // J. Phys. Chem. B. 2017. V. 121. № 49. P. 11144. https://doi.org/10.1021/acs.jpcb.7b09175
  12. 12. Dang D.T. // Front Chem. 2022. V. https://doi.org/10. 829312. https://doi.org/10.3389/fchem.2022.829312
  13. 13. Di Costanzo L., Geremia S. // Molecules. 2020. V. 25. 3555. https://doi.org/10.3389/10.3390/molecules25153555
  14. 14. Dang D.T., Bosmans R.P.G., Moitzi C. et al. // Org. Biomol. Chem. 2014. V. 12. P. 9341. https://doi.org/10.1039/c4ob01729c
  15. 15. De Oliveira O.V., da Silva Gonçalves A., de Almeida N.E.C. // J. Biomol. Struct. Dyn. 2021. https://doi.org/10.1080/07391102.2021.1932600
  16. 16. Zhang S. Synthesis of Mono–Functionalized Cucurbit[n]urils and Exploration of their Applications. PhD thesis. Jacobs Univ., Department of Life Sciences and Chemistry. 2019. 124 p. https://d-nb.info/1190888130/34
  17. 17. Day A., Arnold A.P., Blanch R.J., Snushall B. // J. Org. Chem. 2001. V. 66. P. 8094. https://doi.org/10.1021/jo015897c
  18. 18. Wheate N.J., Kumar P.G.A., Torres A.M. et al. // J. Phys. Chem. B. 2008. V. 112. P. 2311. https://doi.org/10.1021/jp709847p
  19. 19. Biedermann F., Vendruscolo M., Scherman O.A. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14879. https://doi.org/10.1021/ja407951x
  20. 20. Bardelang D., Udachin K.A., Leek D.M. et al. // Cryst. Growth Des. 2011. V. 11. P. 5598. https://doi.org/10.1021/cg201173j
  21. 21. Bardelang D., Banaszak K., Karoui H. et al. // J. Am. Chem. Soc. 2009. V. 13. P. 5402. https://doi.org/10.1021
  22. 22. Mileo E., Mezzina E., Grepioni F. et al. // Chem. Eur. J. 2009. V. 15. P. 7859. https://doi.org/10.1002/chem.200802647
  23. 23. Jayaraj N., Porel M., Ottaviani M.F. et al. // Langmuir. 2009. V. 25. P. 13820. https://doi.org/10.1021/la9020806
  24. 24. Ouari O., Bardelang D. // Isr. J. Chem. 2018. V. 58. https://doi.org/10.1002/ijch.201700115
  25. 25. Лившиц В.А., Мешков Б.Б., Габидинова Р.Ф. и др.// Химия высоких энергий. 2018. Т. 52. С. 140. https://doi.org/10.7868/S0023119718020096
  26. 26. Могилевский Л.Ю., Дембо А.Т., Свергун Д.И., Фейгин Л.А. // Кристаллография. 1984. Т. 29. Вып. 3. С. 587.
  27. 27. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  28. 28. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, 1987. 321 p.
  29. 29. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
  30. 30. Волков В.В. // Кристаллография. 2021. Т. 66. № 5. С. 796. https://doi.org/10.31857/S0023476121050234
  31. 31. Svergun D.I. // Biophys. J. 1999. V. 76. P. 2879.
  32. 32. Svergun D. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
  33. 33. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library