- PII
- 10.31857/S0023476123700182-1
- DOI
- 10.31857/S0023476123700182
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 3
- Pages
- 465-473
- Abstract
- Iron-containing oxides form one of the most important classes of functional materials, which find a wide variety of applications. A promising approach is their use in biomedical technologies as components of systems for visualization, drug delivery, magnetic hyperthermia, etc. Nanocrystalline particles of Y3Fe5O12 garnet, obtained by glycine-nitrate combustion with subsequent thermal treatment, have been experimentally investigated. The results of studying the evolution of the crystal and magnetic structure of Y3Fe5O12 nanoparticles in dependence of the synthesis temperature are presented. A complex analysis using X-ray diffractometry, scanning electron microscopy, and Mössbauer spectroscopy has been performed. A relationship of the size and structural quality of Y3Fe5O12 nanoparticles with the observed magnetic characteristics is evealed.
- Keywords
- CRYSTAL AND MAGNETIC STRUCTURE YTTRIUM FERRITE GARNET NANOPARTICLES
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Cherepanov V., Kolokolov I., L’vov V. // Phys. Rep. 1993. V. 229. P. 81. https://doi.org/10.1016/0370-1573 (93)90107-O
- 2. Dionne G.F. Magnetic Oxides. Springer, 2009. V. 14. 321 p.
- 3. Mallmann E.J.J., Sombra A.S.B., Goes J.C. et al. // Proc. Solid State Phenomena. Trans Tech Publ. 2013. V. 202. P. 65.
- 4. Nakashima H., Pradipto A.-M., Akiyama T. et al. // AIP Adv. 2020. V. 10. P. 045029. https://doi.org/10.1063/1.5130147
- 5. McCloy J.S., Walsh B. // IEEE Trans. Magn. 2013. V. 49. P. 4253. https://doi.org/10.1109/TMAG.2013.22385107
- 6. Kim T.-Y., Yamazaki Y., Hong Y.-D. et al. // Proc. 2003 IEEE International Magnetics Conference (INTERMAG). IEEE. 2003. P. EQ-04.
- 7. Jeon Y.H., Lee J.W., Oh J.H. et al. // Phys. Status Solidi. A. 2004. V. 201. P. 1893. https://doi.org/10.1002/pssa.200304626
- 8. Hirazawa H., Matsumoto R., Sakamoto M. // J. Ceram. Soc. Jpn. 2021. V. 129. P. 579. https://doi.org/10.2109/jcersj2.21058
- 9. Aono H., Ebara H., Senba R. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 4116. https://doi.org/10.1111/j.1551-2916.2011.04879.x
- 10. Liang Y.-J., Xie J., Yu J. et al. // Nano Select. 2021. V. 2. P. 216. https://doi.org/10.1002/nano.202000169
- 11. Fopase R., Saxena V., Seal P. et al. // Mater. Sci. Eng. C. 2020. V. 116. P. 111163. https://doi.org/10.1016/j.msec.2020.111163
- 12. Komlev A.S., Zverev V.I. // Magnetic Materials and Technologies for Medical Applications / Ed. Tishin A.M. Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing, 2022. P. 437.
- 13. Davydov A.S., Belousov A.V., Krusanov G.A. et al. // J. Appl. Phys. 2021. V. 129. P. 033902. https://doi.org/10.1063/5.0032843
- 14. Soleimani H., Abba Z., Yahya N. et al. // Int. J. Mol. Sci. 2012. V. 13. P. 8540. .https://doi.org/10.3390/ijms13078540
- 15. Winkler H., Eisberg R., Alp E. et al. // Z. Phys. B: Condens. Matter. 1983. V. 49. P. 331.
- 16. Sawatzky G.A., Van Der Woude F., Morris A.H. // Phys. Rev. 1969. V. 183. P. 383. https://doi.org/10.1103/PhysRev.183.383
- 17. Haneda K., Morrish A. // J. Magn. Soc. Jpn. 1998. V. 22. S1. P. 255.
- 18. Niyaifar M., Mohammadpour H., Dorafshani M. et al. // J. Magn. Magn. Mater. 2016. V. 409. P. 104. https://doi.org/10.1016/j.jmmm.2016.02.097
- 19. Niaz Akhtar M., Azhar Khan M., Ahmad M. et al. // J. Magn. Magn. Mater. 2014. V. 368. P. 393. https://doi.org/10.1016/j.jmmm.2014.06.004
- 20. Kitayama K., Sakaguchi M., Takahara Y. et al. // J. Solid State Chem. 2004. V. 177. P. 1933. https://doi.org/10.1016/j.jssc.2003.12.040
- 21. Popkov V.I., Almjasheva O.V., Panchu V.V. et al. // Doklady Chemistry. 2016. V. 471. P. 356. https://doi.org/10.1134/S0012500816120041
- 22. Noun W., Popova E., Bardelli F. et al. // Phys. Rev. B. 2010. V. 81. P. 054411. https://doi.org/10.1103/PhysRevB.81.054411
- 23. Jacob K.T., Rajitha G. // Solid State Ionics. 2012. V. 224. P. 32. https://doi.org/10.1016/j.ssi.2012.07.003
- 24. Sadhana K., Murthy S.R., Praveena K. // Mater. Sci. Semicond. Process. 2015. V. 34. P. 305. https://doi.org/10.1016/j.mssp.2015.02.056
- 25. Kum J.S., Kim S.J. et al. // ICAME. 2003. Springer, 2004. P. 169.
- 26. Abbas R., Martinson K.D., Kiseleva T.Y. et al. // Mater. Today Commun. 2022. V. 32. P. 103866. https://doi.org/10.1016/j.mtcomm.2022.103866
- 27. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. Olomouc, Czech Republic. 2012. P. 178. https://doi.org/10.1063/1.4759488
- 28. Башкиров Ш.Ш., Либерман А.Б., Синявский В.И. Магнитная микроструктура ферритов. Казань: Изд-во Казан. ун-та, 1978. 92 с.
- 29. Vandormael D., Grandjean F., Hautot D. et al. // J. Phys. Condens. Matter. 2001. V. 13 . P. 1759. https://doi.org/10.1088/0953-8984/13/8/312
- 30. Sanchez R.D., Rivas J., Vaqueiro P. et al // J. Magn. Magn. Mater. 2002. V. 247. P. 92. https://doi.org/10.1016/S0304-8853 (02)00170-1