RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

THERMOSTIMULATED EVOLUTION OF THE CRYSTAL AND MAGNETIC STRUCTURE OF YTTRIUM FERRITE GARNET NANOPARTICLES

PII
10.31857/S0023476123700182-1
DOI
10.31857/S0023476123700182
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 3
Pages
465-473
Abstract
Iron-containing oxides form one of the most important classes of functional materials, which find a wide variety of applications. A promising approach is their use in biomedical technologies as components of systems for visualization, drug delivery, magnetic hyperthermia, etc. Nanocrystalline particles of Y3Fe5O12 garnet, obtained by glycine-nitrate combustion with subsequent thermal treatment, have been experimentally investigated. The results of studying the evolution of the crystal and magnetic structure of Y3Fe5O12 nanoparticles in dependence of the synthesis temperature are presented. A complex analysis using X-ray diffractometry, scanning electron microscopy, and Mössbauer spectroscopy has been performed. A relationship of the size and structural quality of Y3Fe5O12 nanoparticles with the observed magnetic characteristics is evealed.
Keywords
CRYSTAL AND MAGNETIC STRUCTURE YTTRIUM FERRITE GARNET NANOPARTICLES
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Cherepanov V., Kolokolov I., L’vov V. // Phys. Rep. 1993. V. 229. P. 81. https://doi.org/10.1016/0370-1573 (93)90107-O
  2. 2. Dionne G.F. Magnetic Oxides. Springer, 2009. V. 14. 321 p.
  3. 3. Mallmann E.J.J., Sombra A.S.B., Goes J.C. et al. // Proc. Solid State Phenomena. Trans Tech Publ. 2013. V. 202. P. 65.
  4. 4. Nakashima H., Pradipto A.-M., Akiyama T. et al. // AIP Adv. 2020. V. 10. P. 045029. https://doi.org/10.1063/1.5130147
  5. 5. McCloy J.S., Walsh B. // IEEE Trans. Magn. 2013. V. 49. P. 4253. https://doi.org/10.1109/TMAG.2013.22385107
  6. 6. Kim T.-Y., Yamazaki Y., Hong Y.-D. et al. // Proc. 2003 IEEE International Magnetics Conference (INTERMAG). IEEE. 2003. P. EQ-04.
  7. 7. Jeon Y.H., Lee J.W., Oh J.H. et al. // Phys. Status Solidi. A. 2004. V. 201. P. 1893. https://doi.org/10.1002/pssa.200304626
  8. 8. Hirazawa H., Matsumoto R., Sakamoto M. // J. Ceram. Soc. Jpn. 2021. V. 129. P. 579. https://doi.org/10.2109/jcersj2.21058
  9. 9. Aono H., Ebara H., Senba R. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 4116. https://doi.org/10.1111/j.1551-2916.2011.04879.x
  10. 10. Liang Y.-J., Xie J., Yu J. et al. // Nano Select. 2021. V. 2. P. 216. https://doi.org/10.1002/nano.202000169
  11. 11. Fopase R., Saxena V., Seal P. et al. // Mater. Sci. Eng. C. 2020. V. 116. P. 111163. https://doi.org/10.1016/j.msec.2020.111163
  12. 12. Komlev A.S., Zverev V.I. // Magnetic Materials and Technologies for Medical Applications / Ed. Tishin A.M. Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing, 2022. P. 437.
  13. 13. Davydov A.S., Belousov A.V., Krusanov G.A. et al. // J. Appl. Phys. 2021. V. 129. P. 033902. https://doi.org/10.1063/5.0032843
  14. 14. Soleimani H., Abba Z., Yahya N. et al. // Int. J. Mol. Sci. 2012. V. 13. P. 8540. .https://doi.org/10.3390/ijms13078540
  15. 15. Winkler H., Eisberg R., Alp E. et al. // Z. Phys. B: Condens. Matter. 1983. V. 49. P. 331.
  16. 16. Sawatzky G.A., Van Der Woude F., Morris A.H. // Phys. Rev. 1969. V. 183. P. 383. https://doi.org/10.1103/PhysRev.183.383
  17. 17. Haneda K., Morrish A. // J. Magn. Soc. Jpn. 1998. V. 22. S1. P. 255.
  18. 18. Niyaifar M., Mohammadpour H., Dorafshani M. et al. // J. Magn. Magn. Mater. 2016. V. 409. P. 104. https://doi.org/10.1016/j.jmmm.2016.02.097
  19. 19. Niaz Akhtar M., Azhar Khan M., Ahmad M. et al. // J. Magn. Magn. Mater. 2014. V. 368. P. 393. https://doi.org/10.1016/j.jmmm.2014.06.004
  20. 20. Kitayama K., Sakaguchi M., Takahara Y. et al. // J. Solid State Chem. 2004. V. 177. P. 1933. https://doi.org/10.1016/j.jssc.2003.12.040
  21. 21. Popkov V.I., Almjasheva O.V., Panchu V.V. et al. // Doklady Chemistry. 2016. V. 471. P. 356. https://doi.org/10.1134/S0012500816120041
  22. 22. Noun W., Popova E., Bardelli F. et al. // Phys. Rev. B. 2010. V. 81. P. 054411. https://doi.org/10.1103/PhysRevB.81.054411
  23. 23. Jacob K.T., Rajitha G. // Solid State Ionics. 2012. V. 224. P. 32. https://doi.org/10.1016/j.ssi.2012.07.003
  24. 24. Sadhana K., Murthy S.R., Praveena K. // Mater. Sci. Semicond. Process. 2015. V. 34. P. 305. https://doi.org/10.1016/j.mssp.2015.02.056
  25. 25. Kum J.S., Kim S.J. et al. // ICAME. 2003. Springer, 2004. P. 169.
  26. 26. Abbas R., Martinson K.D., Kiseleva T.Y. et al. // Mater. Today Commun. 2022. V. 32. P. 103866. https://doi.org/10.1016/j.mtcomm.2022.103866
  27. 27. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. Olomouc, Czech Republic. 2012. P. 178. https://doi.org/10.1063/1.4759488
  28. 28. Башкиров Ш.Ш., Либерман А.Б., Синявский В.И. Магнитная микроструктура ферритов. Казань: Изд-во Казан. ун-та, 1978. 92 с.
  29. 29. Vandormael D., Grandjean F., Hautot D. et al. // J. Phys. Condens. Matter. 2001. V. 13 . P. 1759. https://doi.org/10.1088/0953-8984/13/8/312
  30. 30. Sanchez R.D., Rivas J., Vaqueiro P. et al // J. Magn. Magn. Mater. 2002. V. 247. P. 92. https://doi.org/10.1016/S0304-8853 (02)00170-1
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library