RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

The Structure of the Hfq Protein from Chromobacterium haemolyticum Revealed a New Variant of Regulation of RNA Binding with the Protein

PII
10.31857/S0023476123700339-1
DOI
10.31857/S0023476123700339
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
907-913
Abstract
The structure of the Hfq protein from the bacterium Chromobacterium haemolyticum, which forms crystals in two different spatial groups, has been determined. In both cases, the protein has a specific quaternary hexamer-ring structure. The obtained structure showed a previously undescribed interaction between the C-terminal unstructured part of Hfq and the amino acid residues of the proximal RNA-binding site of the protein. This contact may contribute to the regulation of the binding of RNA molecules to the Hfq protein.
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Jørgensen M.G., Pettersen J.S., Kallipolitis B.H. // Biochim. Biophys. Acta – Gene Regul. Mech. 2020. V. 1863. P. 194504. https://doi.org/10.1016/j.bbagrm.2020.194504
  2. 2. Holmqvist E., Wagner G.H. // Biochem. Soc. Trans. 2017. V. 45. P. 1203. https://doi.org/10.1042/BST20160363
  3. 3. Dutta T., Srivastava S. // Gene. 2018. V. 656. P. 60. https://doi.org/10.1016/j.gene.2018.02.068
  4. 4. Wagner E.G.H., Romby P. // Adv. Genet. 2015. V. 90. P. 133. https://doi.org/10.1016/bs.adgen.2015.05.001
  5. 5. Pecoraro V., Rosina A., Polacek N. // Non-Coding RNA. 2022. V. 8. P. 22. https://doi.org/10.3390/ncrna8020022
  6. 6. Miyakoshi M. et al. // Mol. Microbiol. 2022. V. 117. P. 160. https://doi.org/10.1111/mmi.14814
  7. 7. Antoine L. et al. // Genes (Basel). 2021. V. 12. P. 1125. https://doi.org/10.3390/genes12081125
  8. 8. dos Santos R.F., Arraiano C.M., Andrade J.M. // Curr. Genet. 2019. V. 65. P. 1313. https://doi.org/10.1007/s00294-019-00990-y
  9. 9. Stenum T.S., Holmqvist E. // Mol. Microbiol. 2022. V. 117. P. 4. https://doi.org/10.1111/mmi.14785
  10. 10. Katsuya-Gaviria K. et al. // RNA Biol. 2022. V. 19. P. 419. https://doi.org/10.1080/15476286.2022.2048565
  11. 11. Woodson S.A., Panja S., Santiago-Frangos A. // Microbiol. Spectr. / Ed. Storz G., Papenfort K. 2018. V. 6. https://doi.org/10.1128/microbiolspec.RWR-0026-2018
  12. 12. Updegrove T.B., Zhang A., Storz G. // Curr. Opin. Microbiol. 2016. V. 30. P. 133. https://doi.org/10.1016/j.mib.2016.02.003
  13. 13. Murina V., Lekontseva N., Nikulin A. // Acta Cryst. D. 2013. V. 69. P. 1504. https://doi.org/10.1107/S090744491301010X
  14. 14. Park S. et al. // Elife. 2021. V. 10. P. 1. https://doi.org/10.7554/eLife.64207
  15. 15. Kavita K., de Mets F., Gottesman S. // Curr. Opin. Microbiol. 2018. V. 42. P. 53. https://doi.org/10.1016/j.mib.2017.10.014
  16. 16. Schu D.J. et al. // EMBO J. 2015. V. 34. P. 2557. https://doi.org/10.15252/embj.201591569
  17. 17. Santiago-Frangos A. et al. // Proc. Natl. Acad. Sci. U. S. A. 2019. V. 166. P. 10978. https://doi.org/10.1073/pnas.1814428116
  18. 18. Kavita K. et al. // Nucl. Acids Res. 2022. V. 50. P. 1718. https://doi.org/10.1093/nar/gkac017
  19. 19. Santiago-Frangos A. et al. // Proc. Natl. Acad. Sci. U. S. A. 2016. V. 113. P. E6089. https://doi.org/10.1073/pnas.1613053113
  20. 20. Han X.Y., Han F.S., Segal J. // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 1398. https://doi.org/10.1099/ijs.0.64681-0
  21. 21. Lima-Bittencourt C.I. et al. // BMC Microbiol. 2007. V. 7. P. 58. https://doi.org/10.1186/1471-2180-7-58
  22. 22. Takenaka R. et al. // Jpn. J. Infect. Dis. 2015. V. 68. P. 526. https://doi.org/10.7883/yoken.JJID.2014.285
  23. 23. Okada M. et al. // BMC Infect. Dis. 2013. V. 13. P. 406. https://doi.org/10.1186/1471-2334-13-406
  24. 24. Tanpowpong P., Charoenmuang R., Apiwattanakul N. // Pediatr. Int. 2014. V. 56. P. 615. https://doi.org/10.1111/ped.12301
  25. 25. Teixeira P. et al. // Mol. Genet. Genomics. 2020. V. 295. P. 1001. https://doi.org/10.1007/S00438-020-01676-8
  26. 26. Winn M.D. et al. // Acta Cryst. D. 2011. V. 67. P. 235. https://doi.org/10.1107/S0907444910045749
  27. 27. McCoy A.J. et al. // J. Appl. Cryst. 2007. V. 40. P. 658. https://doi.org/10.1107/S0021889807021206
  28. 28. Afonine P. V et al. // Acta Cryst. D. 2012. V. 68. P. 352. https://doi.org/10.1107/S0907444912001308
  29. 29. Emsley P. et al. // Acta Cryst. D. 2010. V. 66. P. 486. https://doi.org/10.1107/S0907444910007493
  30. 30. Wang W. et al. // Genes Dev. 2011. V. 25. P. 2106. https://doi.org/10.1101/gad.16746011.2004
  31. 31. Santiago-Frangos A., Woodson S.A. // Wiley Interdiscip. Rev. RNA. 2018. V. 9. P. e1475. https://doi.org/10.1002/wrna.1475
  32. 32. Sonnleitner E. et al. // Biochem. Biophys. Res. Commun. 2004. V. 323. P. 1017. https://doi.org/10.1016/j.bbrc.2004.08.190
  33. 33. Vecerek B. et al. // Nucl. Acids Res. 2008. V. 36. P. 133. https://doi.org/10.1093/nar/gkm985
  34. 34. Panja S. et al. // J. Mol. Biol. 2015. V. 427. P. 3491. https://doi.org/10.1016/j.jmb.2015.07.010
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library