ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Электроиндуцированные фотонные структуры в холестерических и нематических жидких кристаллах

Код статьи
10.31857/S0023476124020036-1
DOI
10.31857/S0023476124020036
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 2
Страницы
192-205
Аннотация
Дан обзор последних работ, выполненных в лаборатории жидких кристаллов Института кристаллографии им. А.В. Шубникова РАН и посвященных фотонным жидкокристаллическим структурам, возникающим под действием электрического поля. Благодаря индуцированной полем пространственной модуляции показателя преломления такие структуры проявляют оптические свойства, характерные для фотонных кристаллов. Обсуждаются два типа структур. Первый тип индуцируется в холестерических жидких кристаллах со спонтанным образованием спирального распределения директора. Рассматривается ориентационный переход в состояние с лежачей спиралью – с осью в плоскости слоя. Второй тип – это однородные слои нехиральных нематических жидких кристаллов, в которых модуляция показателя преломления возникает благодаря эффекту флексоэлектрической неустойчивости. В обоих случаях принципиально важными являются периодические граничные условия ориентации молекул. Рассматриваются как методы формирования граничных условий, так и фотонные свойства структур.
Ключевые слова
Дата публикации
15.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Schadt M. // Annu. Rev. Mater. Sci. 1997. V. 27. P. 305. https://doi.org/10.1146/annurev.matsci.27.1.305
  2. 2. Hsiang E.-L., Yang Z., Yang Q. et al. // Adv. Opt. Photonics. 2022. V. 14. P. 783. https://doi.org/10.1364/aop.468066
  3. 3. Yin K., Hsiang E.-L., Zou J. et al. // Light Sci. Appl. 2022. V. 11. P. 161. https://doi.org/10.1038/s41377-022-00851-3
  4. 4. Li X., Li Y., Xiang Y. et al. //. Opt. Express. 2016. V. 24. P. 8824. https://doi.org/10.1364/OE.24.008824
  5. 5. Davis S.R., Farca G., Rommel S.D. et al. // Proc. SPIE. 2010. V. 7618. P. 76180E-1. https://doi.org/10.1117/12.851788
  6. 6. Brown C.M., Dickinson D.K.E., Hands P.J.W. // Opt. Laser Technol. 2021. V. 140. P. 107080. https://doi.org/10.1016/j.optlastec.2021.107080
  7. 7. Coles H., Morris S. // Nat. Photonics. 2010. V. 4. P. 676. https://doi.org/10.1038/nphoton.2010.184
  8. 8. Ortega J., Folcia C.L., Etxebarria J. // Liq. Cryst. 2022. V. 49. P. 427. https://doi.org/10.1080/02678292.2021.1974584
  9. 9. Inoue Y., Yoshida H., Inoue K. et al. // Appl. Phys. Express. 2010. V. 3. P. 102702. https://doi.org/10.1143/apex.3.102702
  10. 10. Palto S.P., Geivandov A.R., Kasyanova I.V. et al. // Opt. Lett. 2021. V. 46. P. 3376. https://doi.org/10.1364/OL.426904
  11. 11. Kasyanova I.V., Gorkunov M.V., Palto S.P. // Europhys. Lett. 2022. V. 136. P. 24001. https://doi.org/10.1209/0295-5075/ac4ac9
  12. 12. Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // ACS Photonics. 2020. V. 7. P. 3096. https://doi.org/10.1021/acsphotonics.0c01168
  13. 13. Shtykov N.M., Palto S.P., Geivandov A.R. et al. // Opt. Lett. 2020. V. 45. P. 4328. https://doi.org/10.1364/ol.394430
  14. 14. Palto S.P. // Crystals. 2019. V. 9. P. 469. https://doi.org/10.3390/cryst9090469
  15. 15. Kopp V.I., Zang Z.-Q., Genack A.Z. // Prog. Quantum Electron. 2003. V. 27. P. 369. https://doi.org/10.1016/S0079-6727 (03)00003-X
  16. 16. Kogelnik H., Shank C.V. // J. Appl. Phys. 1972. V. 43. P. 2327. https://doi.org/10.1063/1.1661499
  17. 17. Palto S.P., Shtykov N.M., Kasyanova I.V. et al. // Liq. Cryst. 2020. V. 47. P. 384. https://doi.org/10.1080/02678292.2019.1655169
  18. 18. Вистинь Л.К. // Докл. АН СССР. 1970. Т. 194. № 6. С. 1318.
  19. 19. Williams R. // J. Chem. Phys. 1963. V. 39. P. 384. https://doi.org/10.1063/1.1734257
  20. 20. Бобылев Ю.П., Пикин С.А. // ЖЭТФ. 1977. Т. 72. С. 369.
  21. 21. Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 336 с.
  22. 22. Барник М.И., Блинов Л.М., Труфанов А.Н. и др. // ЖЭТФ. 1977. Т. 73. С. 1936.
  23. 23. Barnik M.I., Blinov L.M., Trufanov A.N. et al. // J. Phys. France. 1978. V. 39. № 4. P. 417. https://doi.org/10.1051/jphys:01978003904041700
  24. 24. Meyer R.B. // Phys. Rev. Lett. 1969. V. 22. P. 918. https://doi.org/10.1103/PhysRevLett.22.918
  25. 25. Palto S.P. // Crystals. 2021. V. 11. P. 894. https://doi.org/10.3390/cryst11080894
  26. 26. Simdyankin I.V., Geivandov A.R., Umanskii B.A. et al. // Liq. Cryst. 2023. V. 50. № 4. P. 663. https://doi.org/10.1080/02678292.2022.2154865
  27. 27. Палто С.П., Гейвандов А.Р., Касьянова И.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. Вып. 3. С. 158. https://doi.org/10.7868/S0370274X17030067
  28. 28. Kasyanova I.V., Gorkunov M.V., Artemov V.V. et al. // Opt. Express. 2018. V. 26. P. 20258. https://doi.org/10.1364/oe26.020258
  29. 29. Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1691. https://doi.org/10.3762/bjnano.10.164
  30. 30. Артемов В.В., Хмеленин Д.Н., Мамонова А.В. и др. // Кристаллография. 2021. Т. 66. № 4. С. 636. https://doi.org/10.31857/S0023476121040032
  31. 31. Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1963. T. 14. Вып. 5. С. 624.
  32. 32. Макушенко А.М., Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1971. T.31. Вып. 4. С. 557.
  33. 33. Козенков В.М., Юдин С.Г., Катышев Е.Г. и др. // Письма в ЖЭТФ. 1986. Т. 12. № 20. С. 1267.
  34. 34. Ostrovskii B.I., Palto S.P. // Liq. Cryst. Today. 2023. V. 32. P. 18. https://doi.org/10.1080/1358314X.2023.2265788
  35. 35. Palto S.P., Shtykov N.M., Khavrichev V.A. et al. // Mol. Mater. 1992. V. 1. P. 3.
  36. 36. Palto S.P., Khavrichev V.A., Yudin S.G. et al. // Mol. Mater. 1992. V. 2. P. 63.
  37. 37. Palto S.P., Blinov L.M., Yudin S.G. et al. // Chem. Phys. Lett. 1993. V. 202. P. 308. https://doi.org/10.1016/0009-2614 (93)85283-t
  38. 38. Palto S.P., Durand G. // J. Phys. II France. 1995. V. 5. P. 963. https://doi.org/10.1051/jp2:1995223
  39. 39. Palto S.P., Yudin S.G., Germain C. et al. // J. Phys. II France. 1995. V. 5. P. 133. https://doi.org/10.1051/jp2:1995118
  40. 40. Kwok H.S., Chigrinov V.G., Takada H. et al. // J. Display Technol. 2005. V. 1. P. 41. https://doi.org/10.1109/jdt.2005.852512
  41. 41. Shteyner E.A., Srivastava A.K., Chigrinov V.G. et al. // Soft Matter. 2013. V. 9. P. 5160. https://doi.org/10.1039/c3sm50498k
  42. 42. Chen D., Zhao H., Yan K. et al. // Opt. Express. 2019. V. 27. P. 29332. https://doi.org/10.1364/oe.27.029332
  43. 43. Geivandov A.R., Simdyankin I.V., Barma D.D. et al. // Liq. Cryst. 2022. V. 49. P. 2027. https://doi.org/10.1080/02678292.2022.2094004
  44. 44. Salter P.S., Carbone G., Jewell S.A. et al. // Phys. Rev. E. 2009. V. 80. P. 041707. https://doi.org/10.1103/PhysRevE.80.041707
  45. 45. Yu C.-H., Wu P.-C., Lee W. // Crystals. 2019. V. 9. P. 183. https://doi.org/10.3390/cryst9040183
  46. 46. Kahn F.J. // Phys. Rev. Lett. 1970. V. 24. P. 209. https://doi.org/10.1103/PhysRevLett.24.209
  47. 47. Palto S.P., Barnik M.I., Geivandov A.R. et al. // Phys. Rev. E. 2015. V. 92. P. 032502. https://doi.org/10.1103/PhysRevE.92.032502
  48. 48. Link D.R., Nakata M., Takanishi Y. et al. // Phys. Rev. E. 2001. V. 65. P. 010701(R). https://doi.org/10.1103/PhysRevE.65.010701
  49. 49. Palto S.P., Mottram N.J., Osipov M.A. // Phys. Rev. E. 2007. V 75. P. 061707. https://doi.org/10.1103/PhysRevE.75.061707
  50. 50. Xiang Y., Jing H.-Z., Zhang Z.-D. et al. // Phys. Rev. Appl. 2017. V. 7. P. 064032. https://doi.org/10.1103/PhysRevApplied.7.064032
  51. 51. Škarabot M., Mottram N.J., Kaur S. et al. // ACS Omega. 2022. V. 7. P. 9785. https://doi.org/10.1021/acsomega.2c00023
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека