RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

X-ray small-angle scattering in the study of the structure of disordered nanosystems

PII
10.31857/S0023476124020062-1
DOI
10.31857/S0023476124020062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 2
Pages
230-242
Abstract
Small-angle scattering (SAS) of X-rays and neutrons is a method for studying the nanostructure of condensed systems with resolutions ranging from fractions to hundreds of nanometers. Its capabilities have significantly expanded in recent decades thanks to the emergence of bright synchrotron radiation sources and laboratory setups with microfocus sources. The increase in computational power of available computers has been accompanied by the development of new algorithms and data analysis techniques, making SAS one of the most effective methods for studying nanostructured materials. After a brief overview of the basic principles of SAS, this paper presents the most prominent examples of such analysis with isotropic dispersive nanosystems: modeling the structure of biological macromolecules in solution, determining size distributions of inhomogeneities in polydisperse systems, and studying multicomponent systems of nanoparticles of various natures. The SAS method does not require special sample preparation and allows for studying objects under conditions close to natural, which is particularly demanded in the development of nature-like technologies.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum Press, 1987. 321 p.
  2. 2. Glatter O., Kratky O. Small-Angle X-ray Scattering. London: Acad. Press, 1982. 515 p.
  3. 3. Guinier A., Fournet G. Small-Angle Scattering of X-rays. New York: John Wiley and Sons, 1955. 269 p.
  4. 4. Lombardo D., Calandra P., Kiselev M. // Molecules. 2020. V. 25. 5624. P. 1. https://doi.org/10.3390/molecules25235624
  5. 5. Stribeck N. X-Ray Scattering of Soft Matter. Berlin; Heidelberg: Springer-Verlag, 2007. 238 p. https://doi.org/10.1007/978-3-540-69856-2
  6. 6. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
  7. 7. Бекренев А.Н., Миркин Л.И. Малоугловая рентгенография деформации и разрушения материалов. М.: МГУ, 1991. 246 с.
  8. 8. Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. М.: Высшая школа, 1980. 328 с.
  9. 9. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  10. 10. Glatter O. // J. Appl. Cryst. 1977. V. 10. № 5. P. 415. https://doi.org/10.1107/S0021889877013879
  11. 11. Bressler I., Pauw B.R., Thunemann A.F. // J. Appl. Cryst. 2015. V. 48. P. 962. https://doi.org/10.1107/S1600576715007347
  12. 12. Volkov V.V. // Crystals. 2022. V. 12. 1659. P. 1. https://doi.org/10.3390/cryst12111659
  13. 13. Svergun D.I., Konarev P.V., Volkov V.V. et al. // J. Chem. Phys. 2000. V. 113. P. 1651. https://doi.org/10.1063/1.481954
  14. 14. Bressler I., Kohlbrecher J., Thünemann A.F. // J. Appl. Cryst. 2015. V. 48. P. 1587. https://doi.org/10.1107/S1600576715016544
  15. 15. Волков В.В., Конарев П.В., Крюкова А.Е. // Письма в ЖЭТФ. 2020. Т. 112. Вып. 9. С. 632. https://doi.org/10.31857/S1234567820210107
  16. 16. Kiselev M.A., Lesieur P., Kisselev A.M. et al. // Appl. Phys. A. 2002. V. 74. P. s1654. https://doi.org/10.1007/s003390201837
  17. 17. Kordyukova L.V., Konarev P.V., Fedorova N.V. et al. // Membranes. 2021. V. 11. P. 772. https://doi.org/ 10.3390/membranes11100772
  18. 18. Stuhrmann H.B. // Acta Cryst. A. 1970. V. 26. P. 297.
  19. 19. Свергун Д.И., Фейгин Л.А., Щедрин Б.М. // Кристаллография. 1981. Т. 26. С. 1163.
  20. 20. Рольбин Ю.А., Свергун Д.И., Фейгин Л.А. и др. // Докл. АН СССР. 1980. Т. 255. С. 1497.
  21. 21. Agirrezabala X., Martin-Benito J., Caston J.R. et al. // EMBO J. 2005. V. 24. P. 3820.
  22. 22. Волков В.В., Лапук В.А., Штыкова Э.В. и др. // Кристаллография. 2008. Т. 53. № 3. С. 476.
  23. 23. Svergun D.I. // Biophys. J. 1999. V. 76. P. 2879. https://doi.org/10.1016/S0006-3495 (99)77443-6
  24. 24. Chacon P., Moran F., Diaz E. et al. // Biophys. J. 1998. V. 74. P. 2760. https://doi.org/10.1016/s0006-3495 (98)77984-6
  25. 25. Franke D., Svergun D.I. // J. Appl. Cryst. 2009. V. 42. P. 342. https://doi.org/10.1107/S0021889809000338
  26. 26. Svergun D.I., Petoukhov M.V., Koch M.H.J. // Biophys. J. 2001. V. 80. P. 2946. https://doi.org/10.1016/S0006-3495 (01)76260-1
  27. 27. Kozin M.B., Svergun D.I. // J. Appl. Cryst. 2001. V. 34. P. 33. https://doi.org/10.1107/S0021889800014126
  28. 28. Volkov V.V., Svergun D.I. // J. Appl. Cryst. 2003. V. 36. P. 860. https://doi.org/10.1107/S0021889803000268
  29. 29. Mertens H.D., Svergun D.I. // J. Struct. Biol. 2010. V. 172. № 1. P. 128. https://doi.org/10.1016/j.jsb.2010.06.012
  30. 30. Сердюк И., Заккаи Н., Заккаи Дж. Методы в молекулярной биофизике. Структура. Функция. Динамика. В 2 томах. М.: Книжный дом “Университет”, 2009–2010. 1304 с.
  31. 31. Levitt M. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 3183. https://doi.org/10.1073/pnas.0611678104
  32. 32. Petoukhov M.V., Svergun D.I. // Biophys. J. 2005. V. 89. P. 1237. https://doi.org/10.1529/biophysj.105.064154
  33. 33. Konarev P.V., Graewert M.A., Jeffries Cy M. et al. // Protein Sci. 2022. V. 31. P. 269. https://doi.org/10.1002/pro.4237
  34. 34. Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
  35. 35. Дьякова Ю.А., Ильина К.Б., Конарев П.В. и др. // Кристаллография. 2017. Т. 62. № 3. С. 364. https://doi.org/10.1134/S1063774517030051
  36. 36. Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. P. 3058. https://doi.org/10.1080/07391102.2018.1507839
  37. 37. Marchenkova M.A., Konarev P.V., Rakitina T.V. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. P. 2939. https://doi.org/10.1080/07391102.2019.1649195
  38. 38. Svergun D.I., Nierhaus K.H. // J. Biol. Chem. 2000. V. 275 (19). P. 14432–9. https://doi.org/10.1074/jbc.275.19.14432
  39. 39. Nissen P., Hansen J., Ban N. // Science. 2000. V. 289. P. 920. https://doi.org/10.1126/science.289.5481.920
  40. 40. EMBL Hamburg, Biological Small Angle Scattering, BioSAXS. ATSAS online. http://www.embl-hamburg.de/biosaxs/atsas-online/
  41. 41. SAS Portal. http://smallangle.org/content/software
  42. 42. SASBDB Curated repository for small angle scattering data and models. https://www.sasbdb.org/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library