RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Oligomerization of IHF protein in the presence of metal cations

PII
10.31857/S0023476124020105-1
DOI
10.31857/S0023476124020105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 2
Pages
268-276
Abstract
The oligomeric state of the nucleoid-associated protein IHF (integration host factor) plays a significant role in organizing and compacting bacterial nucleoids, as well as in the process of bacterial resistance to adverse environmental conditions, including antibiotics. Although IHF was identified more than 25 years ago, the molecular mechanisms of its involvement in such processes remain poorly understood. In this study, using small-angle X-ray scattering, various oligomeric forms of IHF were first identified in aqueous solution depending on the presence of metal cations. It was found that the presence of Mg2+ and K+ ions inhibits the formation of high-order oligomers. The obtained data can be useful in developing strategies to overcome bacterial resistance to drugs.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Dame R.T., Rashid F.-Z.M., Grainger D.C. // Nat. Rev. Genet. 2020. V. 21. P. 227. https://doi.org/10.1038/s41576-019-0185-4
  2. 2. Rohs R., West S., Sosinsky A. et al. // Nature. 2009. V. 461. P. 1248. https://doi.org/10.1038/nature08473
  3. 3. Shahul Hameed U.F., Liao C., Radhakrishnan A.K. et al. // Nucl. Acids Res. 2019. V. 47. P. 2666. https://doi.org/10.1093/nar/gky1299
  4. 4. Bai L., Morozov A.V. // Trends Genet. 2010. V. 26. P. 476. https://doi.org/10.1016/j.tig.2010.08.003
  5. 5. Wang W., Li G.W. Chen C. et al. // Science. 2011. V. 333. P. 1445. https://doi.org/10.1126/science.1204697
  6. 6. Frenkiel-Krispin D., Ben-Avraham I., Englander J. et al. // Mol. Microbiol. 2004. V. 51. P. 395. https://doi.org/10.1046/j.1365-2958.2003.03855.x
  7. 7. Rice P.A., Yang S., Mizuuchi K. et al. // Cell. 1996. V. 87. P. 1295. https://doi.org/10.1016/s0092-8674 (00)81824-3
  8. 8. Grant R., Filman D., Finkel S. et al. // Nat. Struct. Mol. Biol. 1998. V. 5. P. 294. https://doi.org/10.1038/nsb0498-294
  9. 9. Luijsterburg M.S., Noom M.C., Wuite G.J. et al. // J. Struct. Biol. 2006. V. 156. P. 262. https://doi.org/10.1016/j.jsb.2006.05.006
  10. 10. Frenkiel-Krispin D., Minsky A. // J. Struct. Biol. 2006. V. 156. P. 311. https://doi.org/10.1016/j.jsb.2006.05.014
  11. 11. Дадинова Л.А., Петухов М.В., Гордиенко А.М. et al. // Биохимия. 2023. Т. 88. № 5. С. 785. https://doi.org/10.31857/S032097252305007X
  12. 12. Lee S.Y., Lim C.J., Droge P. et al. // Sci. Rep. 2016. V. 5. P. 18146. https://doi.org/10.1038/srep18146
  13. 13. Nash H.A., Robertson C.A. // J. Biol. Chem. 1981. V. 256. P. 9246. https://doi.org/10.1016/S0021-9258 (19)52537-6
  14. 14. Hales L.M., Gumport R.I., Gardner J.F. // J. Bacteriol. 1994. V. 176. P. 2999. https://doi.org/10.1128/jb.176.10.2999-3006.1994
  15. 15. Lin J., Chen H., Dröge P. et al. // PLoS One. 2012. V. 7. № 11. https://doi.org/10.1371/journal.pone.0049885
  16. 16. Holbrook J.A., Tsodikov O.V., Saecker R.M. et al. // J. Mol. Biol. 2001. V. 310. № 2. P. 379. https://doi.org/10.1006/jmbi.2001.4768
  17. 17. Feigin L.A., Svergun D.I. Structure analysis by small-angle x-ray and neutron scattering. New York: Plenum Press, 1987. 335 p.
  18. 18. Peters G.S., Zakharchenko O.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 945. P. 162616. https://doi.org/10.1016/j.nima.2019.162616
  19. 19. Peters G.S., Gaponov Y.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1025. P. 166170. https://doi.org/10.1016/j.nima.2021.166170
  20. 20. Hammersley A.P. // J. Appl. Cryst. 2016. V. 49. P. 646. https://doi.org/10.1107/S1600576716000455
  21. 21. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
  22. 22. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  23. 23. Konarev P.V., Svergun D.I. // IUCr J. 2015. V. 2. P. 352. https://doi.org/10.1107/S2052252515005163
  24. 24. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495. https://doi.org/ 10.1107/S0021889892001663
  25. 25. Porod G. Small-Angle X-Ray Scattering ed O Glatter and O Kratky. London: Academic, 1982.
  26. 26. Petoukhov M.V., Franke D., Shkumatov A.V. et al. // J. Appl. Cryst. 2012. V. 45. № 2. P. 342. https://doi.org/10.1107/S0021889812007662
  27. 27. Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1995 V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
  28. 28. Konarev P.V., Volkov V.V., Sokolova A.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 1277. https://doi.org/10.1107/S0021889803012779
  29. 29. Свергун Д.И., Фейгин Л.А. Рентгеновское и нейтронное малоугловое рассеяние. М.: Наука, 1986. 278 c.
  30. 30. Jacques D.A., Guss J.M., Svergun D.I. et al. // Acta Cryst. D. 2012. V. 68. P. 620. https://doi.org/10.1107/S0907444912012073.
  31. 31. Guinier A. // Ann. Phys. 1939. V. 12. P. 161.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library