RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Ab initio molecular dynamics simulation of the superionic state in Pb0.78Sr0.19K0.03F1.97 solid solution: fluoride sublattice behaviour

PII
10.31857/S0023476124020123-1
DOI
10.31857/S0023476124020123
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 2
Pages
284-289
Abstract
The structural and transport characteristics of the behavior of the fluorine-ion sublattice in the solid solution Pb0.78Sr0.19K0.03F1.97 were studied using the method of non-empirical molecular dynamics. It is shown that the local diffusion of fluoride ions varies depending on the nature of the dopant atom, which is consistent with experimentally observed transport characteristics.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Gopinadh S.V., Phanendra P.V.R.L., John B., Mercy T.D. // Sustain. Mater. Technol. 2022. V. 32. P. e00436. https://doi.org/10.1016/j.susmat.2022.e00436
  2. 2. Konishi H., Minato T., Abe T., Ogumi Z. // J. Electroanal. Chem. 2020. V. 871. P. 114103. https://doi.org/10.1016/j.jelechem.2020.114103
  3. 3. Liu L., Yang L., Shao D. et al. // Ceram. Int. 2020. V. 46. P. 20521. https://doi.org/10.1016/j.ceramint.2020.05.161
  4. 4. Liu G., Zhou Z., Fei F. et al. // Phys. B. Condens. Matter. 2015. V. 457. P. 132. https://doi.org/10.1016/j.physb.2014.10.004
  5. 5. Feng X.X., Liu B., Long M. et al. // J. Phys. Chem. Lett. 2020. V. 11. P. 6266. https://doi.org/10.1021/acs.jpclett.0c01870
  6. 6. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. СПб: Изд-во СПбГУ, 2010. Т. 2. 1000 с.
  7. 7. Ji Q., Melnikova N.A., Glumov O.V. et al. // Ceram. Int. 2023. V. 49. P. 16901. https://doi.org/10.1016/j.ceramint.2023.02.051
  8. 8. Molaiyan P., Witter R. // J. Electroanal. Chem. 2019. V. 845. P. 154. https://doi.org/10.1016/j.jelechem.2019.04.063
  9. 9. Nowroozi M.A., Mohammad I., Molaiyan P. et al. // J. Mater. Chem. A. 2021. V. 9. P. 5980. https://doi.org/10.1039/D0TA11656D
  10. 10. Düvel A. // Dalt. Trans. 2019. V. 48. P. 859. https://doi.org/10.1039/C8DT03759K
  11. 11. Rapaport D.C. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. 549 p. https://doi.org/10.1017/CBO9780511816581
  12. 12. Walker A.B., Dixon M., Gillan M.J. // J. Phys. C. 1982. V. 15. P. 4061. https://doi.org/10.1088/0022-3719/15/19/007
  13. 13. Готлиб И.Ю., Мурин И.В., Пиотровская E.M., Бродская Е.Н. // Вестн. СПбГУ. 2000. Т. 4. С. 62.
  14. 14. Zimmer F., Ballone P., Parrinello M., Maier J. // Solid State Ionics. 2000. V. 127. P. 277. https://doi.org/10.1016/S0167-2738 (99)00267-2
  15. 15. Grasselli F. // J. Chem. Phys. 2022. V. 156. P. 277. https://doi.org/10.1063/5.0087382
  16. 16. Monteil A., Chaussedent S., Guichaoua D. // Mater. Chem. Phys. 2014. V. 146. P. 170. https://doi.org/10.1016/j.matchemphys.2014.03.016
  17. 17. López J.D., García G., Correa H et al. // Data Br. 2020. V. 28. P. 104865. https://doi.org/10.1016/j.dib.2019.104865
  18. 18. López J.D., Diosa J.E., García G. et al. // Heliyon. 2022. V. 8. P. E09026. https://doi.org/10.1016/j.heliyon.2022.e09026
  19. 19. López J.D., Diosa J.E., Correa H. // Ionics (Kiel). 2019. V. 25. P. 5383. https://doi.org/10.1007/s11581-019-03073-7
  20. 20. Silva M.A.P., Rino J.P., Monteil A. et al. // J. Chem. Phys. 2004. V. 121. P. 7413. https://doi.org/10.1063/1.1796252
  21. 21. Chergui Y., Nehaoua N., Telghemti B. et al. // Eur. Phys. J. Appl. Phys. 2010. V. 51. P. 20502. https://doi.org/10.1051/epjap/2010096
  22. 22. Silva M.A.P., Rino J.P., Monteil A. et al. // J. Chem. Phys. 2004. V. 121. P. 7413. https://doi.org/10.1063/1.1796252
  23. 23. Petrov А.V., Ji Q., Murin I.V. // Russ. J. Gen. Chem. 2022. V. 92. P. 2877. https://doi.org/10.1134/S1070363222120404
  24. 24. Netshisaulu T.T., Chadwick A.V., Ngoepe P.E., Catlow C.R.A. // J. Phys. Condens. Matter. 2005. V. 17. P. 6575. https://doi.org/10.1088/0953-8984/17/41/026
  25. 25. Evarestov R.A., Murin I.V., Petrov A.V. // J. Phys. Condens. Matter. 1989. V. 1. P. 6603. https://doi.org/10.1088/0953-8984/1/37/008
  26. 26. Evarestov R.A., Leko A.V., Murin I.V. et al. // Phys. Status Solidi. 1992. V. 170. P. 145. https://doi.org/10.1002/pssb.2221700117
  27. 27. Chen J., Zhang Z., Guo Y., Robertson J. // J. Appl. Phys. 2022. V. 131. P. 145. https://doi.org/10.1063/5.0087914
  28. 28. Hoat D.M., Rivas Silva J.F., Méndez Blas A. // Optik. 2019. V. 181. P. 1023. https://doi.org/10.1016/j.ijleo.2018.12.173
  29. 29. Oka M., Kamisaka H., Fukumura T., Hasegawa T. // Comput. Mater. Sci. 2018. V. 154. P. 91. https://doi.org/10.1016/j.commatsci.2018.07.038
  30. 30. Zhu Z., Deng Z., Chu I.-H. et al. // Comput. Mater. Syst. Des. Springer Int. Publ., 2018. P. 147. https://doi.org/10.1007/978-3-319-68280-8_7
  31. 31. Mo Y. // ECS Meet. Abstr. 2019. V. MA2019-02. P. 97. https://doi.org/10.1149/MA2019-02/2/97
  32. 32. Petrov A.V., Ivanov-Schitz A.K., Murin I.V. // Phys. Status Solidi. 2023. V. 220. P. 97. https://doi.org/10.1002/pssa.202200494
  33. 33. He X., Zhu Y., Mo Y. // Nat. Commun. 2017. V. 8. P. 15893. https://doi.org/10.1038/ncomms15893
  34. 34. Sun S., Xia D. // Solid State Ionics. 2008. V. 179. P. 2330. https://doi.org/10.1016/j.ssi.2008.09.028
  35. 35. Zhu Z., Chu I.-H., Ong S.P. // Chem. Mater. 2017. V. 29. P. 2474. https://doi.org/10.1021/acs.chemmater.6b04049
  36. 36. Wan T.H., Ciucci F. // ACS Appl. Energy Mater. 2021. V. 4. P. 7930. https://doi.org/10.1021/acsaem.1c01262
  37. 37. Hernández-Haro N., Ortega-Castro J., Martynov Y.B. et al. // Chem. Phys. 2019. V. 516. P. 225. https://doi.org/10.1016/j.chemphys.2018.09.023
  38. 38. Drużbicki K., Mikuli E., Kocot A. et al. // J. Phys. Chem. A. 2012. V. 116. P. 7809. https://doi.org/10.1021/jp301190z
  39. 39. Bruska M.K., Czekaj I., Delley B. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 15947. https://doi.org/10.1039/c1cp20923j
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library