- PII
- 10.31857/S0023476124040052-1
- DOI
- 10.31857/S0023476124040052
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 4
- Pages
- 597-611
- Abstract
- Crystals of new structural high-symmetry modification of Cs2HIn(IO3)6, which crystallyzes in sp. gr. R3 with parameters of unit cell a = 11.8999(4), c = 11.6513(5) Å were obtained in hydrothermal conditions. Crystal chemical comparison with triclinic modification the investigated earlier was carried out. Both structures are composed of isolated blocks [In(IO3)6]3–. The new modification belongs to the family of trigonal iodates isostructural to K2Ge(IO3)6 compound. Local symmetry of separated blocks [M(IO3)6] (M = Ge, Ti, Sn, Ga, In and other metals) are analyzed. Structural systematic of iodate families is suggested on the base of comparative crystal chemical analysis. The influence of cation composition and synthesis conditions on symmetry and topology of crystal structures as well as local symmetry of blocks on physical properties of compounds are discussed.
- Keywords
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 79
References
- 1. Sun C.-F., Yang B.-P., Mao J.-G. // Sci. China Chem. 2011. V. 54. P. 911. https://doi.org/10.1007/s11426-011-4289-8
- 2. Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- 3. Guo S.-P., Chi Y., Guo G.-C. // Coord. Chem. Rev. 2017. V. 335. P. 44. https://doi.org/10.1016/j.ccr.2016.12.013
- 4. Mao F.-F., Hu C.-L., Chen J. et al. // Chem. Commun. 2019. V. 55. P. 6906. https://doi.org/10.1039/c9cc02774b
- 5. Jia Y.-J., Chen Y.-G., Guo Y. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 48. P. 17194. https://doi.org/10.1002/ange.201908935
- 6. Chen J., Hu C.-L., Mao F.-F. et al. // Chem. Sci. 2019. V. 10. P. 10870. https://doi.org/10.1039/c9sc04832d
- 7. Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
- 8. Wu C., Lin L., Jiang X.X. et al. // Chem. Mater. 2019. V. 31. № 24. P. 10100. https://doi.org/10.1021/acs.chemmater.9b03214
- 9. Abudouwufu T., Zhang M., Cheng S.C. et al. // Eur. J. Inorg. Chem. 2019. V. 25. P. 1221. https://doi.org/10.1002/chem.201804995
- 10. Luo M., Liang F., Hao X. et al. // Chem. Mater. 2020. V. 32. № 6. P. 2615. https://doi.org/10.1021/acs.chemmater.0c00196
- 11. Fan H.X., Lin C.S., Chen K.C. et al. // Angew. Chem. 2020. V. 59. P. 5268. https://doi.org/10.1002/anie.201913287
- 12. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2098. https://doi.org/10.1002/anie.201813968
- 13. Cao Z., Yue Y., Yao J. et al. // Inorg. Chem. 2011. V. 50. № 24. P. 12818. https://doi.org/10.1021/ic201991m
- 14. Wu Q., Liu H., Jiang F. et al. // Chem. Mater. 2016. V. 28. P. 1413. https://doi.org/10.1021/acs.chemmater.5b04511
- 15. Zhang M., Hu C., Abudouwufu T. et al. // Chem. Mater. 2018. V. 30. P. 1136. https://doi.org/10.1021/acs.chemmater.7b05252
- 16. Mao F.-F., Hu C.-L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
- 17. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Commun. 2019 V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
- 18. Xu Y., Zhou Y., Lin C. et al. // Cryst. Growth Des. 2021. V. 21. P. 7098. https://doi.org/10.1021/acs.cgd.1c00992
- 19. De Boer J.L., van Bolhuis F., Olthof-Hazekamp R.V. // Acta Cryst. 1966. V. 21 (5). P. 841. https://doi.org/10.1107/s0365110x66004031
- 20. Liminga R., Abrahams S.C., Bernstein J.L. // J. Chem. Phys. 1975. V. 62. P. 4388. https://doi.org/10.1063/1.430339
- 21. Jansen M. // Solid State Chem. 1976. V. 17. P. 1.
- 22. Liang J.K., Wang C.G. // Acta Chim. Sin. 1982. V. 40. P. 985.
- 23. Schellhaas F., Hartl H.T., Frydrych R. // Acta Cryst. B. 1972. V. 28. № 9. P. 2834.
- 24. Phanon D., Bentria B., Jeanneau E. et al. // Z. Krist. 2006. V. 221. P. 635.
- 25. Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. № 11. P. 1123. https://doi.org/10.1039/B612677D
- 26. Shehee T.C., Pehler S.F., Albrecht-Schmitt T.E. // J. Alloys Compd. 2005. V. 388. P. 225. https://doi.org/10.1016/j.jallcom.2004.07.037
- 27. Chang H.-Y., Kim S.-H., Ok K.M., Halasyamani P.S. // J. Am. Chem. Soc. 2009. V. 131. № 19. P. 6865. https://doi.org/10.1021/ja9015099
- 28. Sun C.-F., Hu C.-L., Kong F. et al. // Dalton Trans. 2010. V. 39. P. 1473. https://doi.org/10.1039/B917907K
- 29. Kim Y.H., Tran T.T., Halasyamani P.S., Ok K.M. // Inorg. Chem. Front. 2015. V. 2. P. 361. https://doi.org/10.1039/C4QI00243A
- 30. Yang B.P., Hu C.L., Xu X., Mao J.G. // Inorg. Chem. 2016. V. 55. № 5. P. 2481. https://doi.org/10.1021/acs.inorgchem.5b02859
- 31. Liu H., Jiang X., Wang X. et al. // J. Mater. Chem. C. 2018. V. 6. P. 4698. https://doi.org/10.1039/c8tc00851e
- 32. Liu K., Han J., Huang J. et al. // RSC Adv. 2021. V. 11. P. 10309. https://doi.org/10.1039/d0ra10726c
- 33. Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 2263. https://doi.org/10.1021/ic048428c
- 34. Belokoneva E.L., Karamysheva A.S., Dimitrova O.V., Volkov A.S. // Crystallography Reports. 2018. V. 63. P. 734. https://doi.org/10.1134/S1063774518050048
- 35. Xiao L., You F., Gong P. et al. // Cryst. Eng. Commun. 2019. V. 21. P. 4981. https://doi.org/10.1039/c9ce00814d
- 36. Liu X., Li G., Hu Y. et al. // Cryst. Growth Des. 2008. V. 8. № 7. P. 2453. https://doi.org/10.1021/cg800034z
- 37. Mitoudi Vagourdi E., Zhang W., Denisova K. et al. // ACS Omega. 2020. V. 5. № 10. P. 5235. https://doi.org/10.1021/acsomega.9b04288
- 38. Yang B.-P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. № 5. P. 1055. https://doi.org/10.1039/c0dt01272f
- 39. Реутова О.В., Белоконева Е.Л., Димитрова О.В., Волков А.С. // Кристаллография. 2020. T. 65. № 3. C. 441. https://doi.org/10.31857/S0023476120030273
- 40. Park G., Byun H.R., Jang J.I., Ok K.M. // Chem. Mater. 2020. V. 32. P. 3621. https://doi.org/10.1021/acs.chemmater.0c01054
- 41. Xu X., Hu C.-L., Yang B.-P., Mao J.-G. // CrystEngComm. 2013. V. 15. № 38. P. 7776. https://doi.org/10.1039/C3CE41185K
- 42. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 1. С. 59. https://doi.org/10.1134/S1063774518010029
- 43. Gurbanova O.A., Belokoneva E.L. // Crystallography Reports. 2006. V. 51. P. 577. https://doi.org/10.1134/S1063774506040067
- 44. CrysAlisPro Software System, Version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK, 2014.
- 45. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 46. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
- 47. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
- 48. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
- 49. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- 50. Qian Z., Wu H., Yu H. et al. // Dalton Trans. 2020. V. 49. P. 8443. https://doi.org/10.1039/D0DT00593B
- 51. Hector A.L., Henderson S.J., Levason W., Webster M. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 198. https://doi.org/10.1002/1521-3749 (200201)628:13.0.CO;2-L
- 52. Yeon J., Kim S.-H., Halasyamani P.S. // J. Solid State Chem. 2009. V. 182. № 12. P. 3269. https://doi.org/10.1016/j.jssc.2009.09.021
- 53. Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
- 54. Chen X., Xue H., Chang X. et al. // J. Alloys Compd. 2005. V. 398. P. 173. https://doi.org/10.1016/j.jallcom.2005.01.050
- 55. Hebboul Z., Galez C., Benbertal D. et al. // Crystals. 2019. V. 9. P. 464. https://doi.org/10.3390/cryst9090464
- 56. Chikhaoui R., Hebboul Z., Fadla M.A. et al. // Nanomaterials. 2021. V. 11. № 12. P. 3289. http://doi.org/10.3390/nano11123289
- 57. Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777