RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Structure of inorganic compounds halogen bonds in derivatives of 2,5-diiod-1,4-dimethylbenzene

PII
10.31857/S0023476124040062-1
DOI
10.31857/S0023476124040062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 4
Pages
612-619
Abstract
The synthesis of 1,4-di(bromomethyl)-2,5-diiodo-benzene (1), diacetate of 2,5-diiodo1,4-di(hydroxymethyl)benzene (2) and diiodide of 1,1’-[(2,5-diiodo-1,4-phenylene)bis(methylene)]dipyridinium (3) is described and their crystallographic data are given. All three crystal structures are characterized by the stacked packing of planar molecules and the presence of halogen bonds I–Br, I–O, and I–I, respectively. The number of halogen bonds is maximum in compound 1: two I–Br bonds for each halogen atom. Compounds 2 and 3 contain one halogen bond per halogen atom, but they are significantly shorter than in compound 1. All crystals were investigated by IR spectroscopy and synchronized thermal analysis. Compound 1, which has no ionic or hydrogen bonds, melts at a higher temperature than ionic compound 3 (218 and 200°C, respectively) due to the presence of a large number of intermolecular halogen bonds. Compound 2 melts at a lower temperature (151°C), which is characteristic of esters.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
73

References

  1. 1. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  2. 2. Mikherdov A.S., Novikov A.S., Boyarskiy V.P et al. // Nature Commun. 2020. V. 11. 2921. https://doi.org/10.1038/s41467-020-16748-x
  3. 3. Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.31857/S0044457X21100202
  4. 4. Yushina I., Tarasova N., Kim D. et al. // Crystals. 2019. V. 9. P. 506. https://doi.org/10.3390/cryst9100506
  5. 5. Albright E., Cann J., Decken A. et al. // Cryst. Eng. Commun. 2017. V. 19. P. 1024. https://doi.org/10.1039/C6CE02339H
  6. 6. Baykov S.V., Filimonov S.I., Rozhkov A.V. et al. // Cryst. Growth Des. 2020. V. 20. P. 995.
  7. 7. Albietz P.J., Cleary B.P., Paw W. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 12091. https://doi.org/10.1021/ja016127l
  8. 8. Albietz P.J., Cleary B.P., Paw W. et al. // Inorg. Chem. 2002. V. 41. P. 2095. https://doi.org/10.1021/ic025506s
  9. 9. Rajakumar K., Sharutin V.V., Adonin S.A. et al. // J. Struct. Chem. 2022. V. 63. P. 620. https://doi.org/10.1134/S0022476622040138
  10. 10. Grunder S., Huber R., Horhoiu V. et al. // J. Org. Chem. 2007. V. 72. P. 8337. https://doi.org/10.1021/jo7013998
  11. 11. Gaefke G., Enkelmann V., Höger S. // Synthesis. 2006. V. 17. P. 2971. https://doi.org/10.1055/s-2006-942534
  12. 12. Costa A.L., Ferreira L.F., Prata J.V. // J. Polym. Sci. A. Polym. Chem. 2008. V. 46. P. 6477. https://doi.org/10.1002/pola.22957
  13. 13. Hodecker M., Kozhemyakin Y., Weigold S. et al. // Chem. Eur. J. 2020. V. 26. P. 16990. https://doi.org/10.1002/chem.202002552.
  14. 14. Jordan R.S., Wang Y., McCurdy R.D. et al. // Chem. 2016. V. 1. P. 78. https://doi.org/10.1016/j.chempr.2016.06.010
  15. 15. Fan Q.-L., Lu S., Lai Y.-H. et al. // Macromolecules. 2003. V. 36. P. 6976. https://doi.org/10.1021/ma030093f
  16. 16. Nishinaga S., Sawanaka Y., Toyama R. et al. // Chem. Lett. 2018. V. 47. P. 1409. https://doi.org/10.1246/cl.180644
  17. 17. Horváth D.V., Holczbauer T., Bereczki L. et al. // CrystEngComm. 2018. V. 13. https://doi.org/10.1039/c8ce00041g
  18. 18. CrysAlisPro 1.171.41.103a (Rigaku Oxford Diffraction, 2021).
  19. 19. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  20. 20. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. 21. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  22. 22. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806. https://doi.org/10.1021/jp8111556
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library