RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Computer simulation of x-ray section topography of gas pores in a silicon carbide crystal

PII
10.31857/S0023476124050025-1
DOI
10.31857/S0023476124050025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
764-770
Abstract
The results of computer simulation of images of gas pores in a silicon carbide crystal in sectional topograms, that is, during diffraction of a narrow beam of X-rays in the crystal, are presented for the first time. For this purpose, a special module of the universal computer program XRWP was used. This program is developing by the author to calculate the effects of coherent X-ray optics. The calculation method combines two methods, previously known, namely, Fourier transform methods (Kato method), and the method of solving the Takagi-Taupin equations. It is shown that gas pores can produce a wide variety of images, depending on the experimental conditions and the position of the gas pore inside the crystal.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Kato N., Lang A.R. // Acta Cryst. 1959. V. 12. P. 787. https://doi.org/10.1107/S0365110X61001625
  2. 2. Kato N. // Acta Cryst. 1961. V. 14. P. 627. https://doi.org/10.1107/S0365110X61001947
  3. 3. Takagi S. // Acta Cryst. 1962. V. 15. P. 1611. https://doi.org/10.1107/S0365110X62003473
  4. 4. Taupin D. // Acta Cryst. 1967. V. 23. P. 25. https://doi.org/10.1107/S0365110X67002063
  5. 5. Gronkowski J. // Phys. Rep. 1991. V. 206. P. 1. https://doi.org/10.1016/0370-1573 (91)90086-2
  6. 6. Суворов Э.В., Смирнова И.А. // Успехи физ. наук. 2015. Т. 185. С. 897. https://doi.org/10.3367/UFNr.0185.201509a.0897
  7. 7. Шульпина И.Л., Суворов Э.В., Смирнова И.А. и др. // ЖTФ. 2022. Т. 92. С. 1475. https://doi.org/10.21883/JTF.2022.10.53240.23-22
  8. 8. Аргунова Т.С., Кон В.Г. // Успехи физ. наук. 2019. Т. 189. С. 643. https://doi.org/10.3367/UFNr.2018.06.038371
  9. 9. Argunova T.S., Kohn V.G., Lim J.-H. et al. // Materials (MDPI). 2023. V. 16. P. 6589. https://doi.org/10.3390/ma16196589
  10. 10. Argunova T.S., Kohn V.G., Lim J.-H. et al. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. Suppl. 1. P. S20. https://doi.org/10.1134/S1027451023070030
  11. 11. Cooley J.W., Tukey J.W. // Math. Comput. 1965. V. 19. P. 297.
  12. 12. Кон В.Г. Программа XRWP. http://xray-optics.ucoz.ru/XR/xrwp.htm
  13. 13. Кон В.Г. http://xray-optics.ucoz.ru/XR/xrwp-equations.pdf
  14. 14. Кон В.Г. // Кристаллография. 2023. Т. 68. С. 196. https://doi.org/10.31857/S002347612302008X
  15. 15. Кон В.Г., Смирнова И.А. // Кристаллография. 2022. Т. 67. С. 185. https://doi.org/10.31857/S0023476122020084
  16. 16. Кон В.Г. Онлайн-программа https://kohnvict.ucoz.ru/jsp/3-difpar.htm
  17. 17. Authier A. // Dynamical Theory of X-ray Diffraction. 3rd ed. Oxford University Press, 2005. 696 p.
  18. 18. Pinsker Z.G. // Dynamical Scattering of X-Rays in Crystals. Springer-Verlag, 1978. 390 p.
  19. 19. Afanasev A.M., Kohn V.G. // Acta Cryst. A. 1971. V. 27. P. 421.
  20. 20. Афанасьев А.М., Кон В.Г. // ФТТ. 1977. Т. 19. С. 1775.
  21. 21. Snigirev A., Kohn V., Snigireva I. et al. // Nature. 1996. V. 384. P. 49.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library