RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

The temperature evolution of the atomic structure and the influence of the local environment of atoms on the optical properties of the NA2SIF6 crystal

PII
10.31857/S0023476124050082-1
DOI
10.31857/S0023476124050082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
821-833
Abstract
Crystals of sodium hexafluorosilicate Na2SiF6 millimeter size were grown by the hydrothermal method. According to X-ray diffraction analysis, it was revealed that Na2SiF6 samples are twinned according to the merohedral law and crystallize in sp. gr. P321 with unit cell parameters equal at 295 K = 8.8582(12), = 5.0396(11) Å, = 342.47(17) Å3 on average the results of repeated measurements. A multi-temperature diffraction study of Na2SiF6 was carried out, based on the results of which the temperature dynamics of the optical properties of crystals was calculated. The structural similarity of Na2SiF6 crystals with crystals of the langasite family La3Ga5SiO14 was found. This made it possible to explain the optical activity of Na2SiF6 by considering electron density spirals similar to langasite, twisted around a triple axis of symmetry passing through the origin of the Na2SiF6 cell. The fractures in the temperature dependences of the refractive indices and rotation of the plane of polarization of light are explained by taking into account the anomalous features of interatomic interactions along the triple axis of the crystal cell passing through the Si2(2d) position with coordinates (1/3, 2/3, z). It was found that the main factor influencing the temperature dynamics of optical parameters is the Si2(2d)–F2(6g) distance, which increases abnormally with cooling.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Zalkin A., Forrester J.D., Templeton D.H. // Acta Cryst. 1964. V. 17. P. 1408. https://doi.org/10.1107/S0365110X64003516
  2. 2. Arianpour F., Arianpour A.C., Aali B. // Silicon. 2021. V. 13. P. 4381. https://doi.org/10.1007/s12633-020-00755-0
  3. 3. Zhang W., Jing Q., Fang Yu., Chen Z. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 1739. http://dx.doi.org/10.1002/zaac.201700322
  4. 4. Lang T.-C., Han T., Peng L.-L., Tu M.-J. // Mater. Chem. Front. 2017. V. 1. P. 928. https://doi.org/10.1039/C6QM00284F
  5. 5. Ha J., Novitskaya E., Lam N. et al. // J. Lumin. 2020. V. 218. P. 116835. https://doi.org/10.1016/j.jlumin.2019.116835
  6. 6. Zhao J.-Y., Wang X.-G. // Appl. Phys. A. 2019. V. 125. P. 178. https://doi.org/10.1007/s00339-019-2468-1
  7. 7. Beers W., Brik M., Ma C.-G. et al. // ECS J. Solid State Sci. Technol. 2024. https://doi.org/10.1149/2162-8777/ad561b
  8. 8. Krasinski M.J., Prywer J. // J. Cryst. Growth. 2007. V. 303. P. 105. https://doi.org/10.1016/j.jcrysgro.2006.10.228
  9. 9. Милль Б.В., Буташин А.В., Ходжабагян Г.Г. и др. // Докл. АН СССР. 1982. Т. 264. № 6. С. 1385.
  10. 10. Mill B.V., Pisarevsky Yu.V. // Proc. 2000 IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA. P. 133.
  11. 11. Максимов Б.А., Молчанов В.Н., Милль Б.В. и др. // Кристаллография. 2005. Т. 50. № 5. С. 813.
  12. 12. Винчелл А.Н., Винчелл Г. Оптические свойства искусственных минералов. М.: Мир, 1967. 528 с.
  13. 13. Shannon R.D., Shannon R.S., Medenbach O., Fischer R.X. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 4. P. 931. https://doi.org/10.1063/1.1497384
  14. 14. Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.
  15. 15. Cipriani C. // Period. Mineral. 1955. V. 24. P. 361.
  16. 16. Piret P. // Bull. Soc. Chim. Belg. 1961. V. 70. P. 193.
  17. 17. Schäfer G.F. // Z. Kristallogr. 1986. B. 175. S. 269. https://doi.org/10.1524/zkri.1986.175.3-4.269
  18. 18. Дудка А.П. // Кристаллография. 2017. Т. 62. № 2. С. 202. https://doi.org/10.7868/S0023476117020102
  19. 19. Marty K., Bordet P., Simonet V. et al. // Phys. Rev. B. 2010. V. 81. P. 054416. https://doi.org/10.1103/PhysRevB.81.054416
  20. 20. Pikin S.A., Lyubutin I.S. // Phys. Rev. B. 2012. V. 86. Р. 064414. https://doi.org/10.1103/PhysRevB.86.064414
  21. 21. Wang Z., Ji H., Zhang Z. et al. // J. Am. Ceram. Soc. 2021. V. 104. P. 5077. https://doi.org/10.1111/jace.17739
  22. 22. Singh V.S., Moharil S.V. // Mater. Today Proc. 2020. V. 28. P. 37. https://doi.org/10.1016/j.matpr.2020.01.047
  23. 23. Rigaku Oxford Diffraction, 2018, CrysAlisPro Software system, version 1.171.39.46, Rigaku Corporation, Oxford, UK.
  24. 24. Dudka A. // J. Appl. Cryst. 2010. V. 43. № 6. P. 1440. https://doi.org/10.1107/S0021889810037131
  25. 25. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. В. 229. № 5. S. 345. https://doi.org/10.1515/zkri-2014-1737
  26. 26. Dudka A.P., Bolotina N.B., Khrykina O.N. // J. Appl. Cryst. 2019. V. 52. P. 690. https://doi.org/10.1107/S1600576719005818
  27. 27. Glazer A.M. // J. Appl. Cryst. 2002. V. 35. P. 652. https://doi.org/10.1107/S0021889802013997
  28. 28. Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 207 с.
  29. 29. Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 304 с.
  30. 30. Бацанов С.С. Структурная рефрактометрия. М.: Высшая школа, 1976. 304 с.
  31. 31. Константинова А.Ф., Головина Т.Г., Дудка А.П. // Кристаллография. 2018. Т. 63. № 2. С. 218. https://doi.org/10.7868/S0023476118020091
  32. 32. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
  33. 33. Lowry T.M. Optical Rotatory Power. London: Longmans, Green and Co., 1935. 524 p.
  34. 34. Araki N., Ohsato H., Kakimoto K. et al.// J. Eur. Ceram. Soc. 2007. V. 27. P. 4099. https://doi.org/10.1016/j.jeurceramsoc.2007.02.177
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library