RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Peculiarities of formation of defects initiating fatigue faults in granular alloy EP741NP

PII
10.31857/S0023476124060027-1
DOI
10.31857/S0023476124060027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 6
Pages
927-937
Abstract
The samples of EP741NP alloy destroyed during fatigue testing were investigated by means of transmission electron microscopy, energy-dispersive X-ray microanalysis and electron diffraction. The composition and crystal structure of defects detected at the boundaries of fatigue cracks were studied in details. It was shown that such defects mainly have the morphology of elongated flat "carpets" containing NiO, CTixNb1–x, amorphous AlOx, HfO2, Al2O3, β-Al2O3, Al2MgO4, Co7Mo6, Co3O4, S4Ti3, NbO2, TiO2, as well as amorphous regions containing C, O, Ca, S, Na and Cl. Assumptions were made about the source and of time formation of the studied defects.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Williams J.C., Starke E.A. // Acta Mater. 2003. V. 51. P. 5775. https://doi.org/10.1016/j.actamat.2003.08.023
  2. 2. Caron P., Khan T. // Aerosp. Sci. Technol. 1999. V. 3. P. 513. https://doi.org/10.1016/S1270-9638 (99)00108-X
  3. 3. Sato A., Chiu Y.-L., Reed R.C. // Acta Mater. 2011. V. 59. P. 225. https://doi.org/10.1016/j.actamat.2010.09.027
  4. 4. Xia W. et al. // J. Mater. Sci. Technol. 2020. V. 44. P. 76. https://doi.org/10.1016/j.jmst.2020.01.026
  5. 5. Gayda J., Gabb T.P., Kantzos P.T. // Superalloys. 2004. P. 323.
  6. 6. Волков А.М. et al. // Технология металлов. 2019. № 1. С. 2. https://doi.org/10.31044/1684-2499-2019-1-0-2-8
  7. 7. Гарибов Г.С., Кошелев В.Я., Шорошев Ю.Г. и др. // Заготовительные производства в машиностроении. 2010. № 1. С. 45.
  8. 8. Belan J. // Mater. Today Proc. 2016. V. 3. P. 936. https://doi.org/10.1016/j.matpr.2016.03.024
  9. 9. Ida S. et al. // Metals (Basel). 2022. V. 12. P. 1817. https://doi.org/10.3390/met12111817
  10. 10. Zhao S. et al. // Mater. Sci. Eng. A. 2003.V. 355. P. 96. https://doi.org/10.1016/S0921-5093 (03)00051-0
  11. 11. Трунькин И.Н. и др. // Кристаллография. 2019. Т. 64. С. 539. https://doi.org/10.1134/S002347611904026X
  12. 12. Симс Ч.Т., Норман С.С., Уильям С.Х. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Т. 1. М.: Металлургия, 1995. 384 с.
  13. 13. Pavlov I.S. et al. // Scr. Mater. 2023. V. 222. P. 115023. https://doi.org/10.1016/j.scriptamat.2022.115023
  14. 14. Myasoedov A.V. et al. // J. Appl. Phys. 2024. V. 135. https://doi.org/10.1063/5.0189133
  15. 15. Ievlev V.M. et al. // Inorg. Mater. 2023. V. 59. P. 1295. https://doi.org/10.1134/S002016852312004X
  16. 16. Кишкин С.Т., Качанов Е.Б., Булыгин И.П. Авиационные материалы. Т. 3. Жаропрочные стали и сплавы. Сплавы на основе тугоплавких металлов. М.: ВИАМ, 1989. 566 с.
  17. 17. ГОСТ Р 52802-2007 Сплавы никелевые жаропрочные гранулируемые. Марки.
  18. 18. Peng Y. et al. // Calphad. 2020. V. 70. P. 101769. https://doi.org/10.1016/j.calphad.2020.101769
  19. 19. Gutiérrez G., Johansson B. // Phys. Rev. B. 2002. V. 65 P. 104202. https://doi.org/10.1103/PhysRevB.65.104202
  20. 20. Beevers C.A., Ross Μ.A.S. // Z. Kristallogr. Cryst. Mater. 1937. V. 97. P. 59. https://doi.org/10.1524/zkri.1937.97.1.59
  21. 21. Kato K., Saalfeld H. // Acta Cryst. B. 1977. V. 33. P. 1596. https://doi.org/10.1107/S0567740877006608
  22. 22. Bettman M., Peters C.R. // J. Phys. Chem. 1969. V. 73. P. 1774. https://doi.org/10.1021/j100726a024
  23. 23. Bettman M., Terner L.L. // Inorg. Chem. 1971. V. 10. P. 1442. https://doi.org/10.1021/ic50101a025
  24. 24. Sasaki S., Fujino K., Takéuchi Y. // Proc. Jpn Acad. Ser. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
  25. 25. Prostakova V. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  26. 26. Johnson B., Jones J.L. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier, 2019. 570 p. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
  27. 27. R Taylor J. et al. // Calphad. 1992. V. 16. P. 173. https://doi.org/10.1016/0364-5916 (92)90005-I
  28. 28. Alper A.M. et al. // J. Am.Ceram. Soc. 1962. V. 45. P. 263. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x
  29. 29. Davydov A., Kattner U.R. // J. Phase Equilibria. 1999. V. 20. P. 5. https://doi.org/10.1361/105497199770335893
  30. 30. Chen M., Hallstedt B., Gauckler L.J. // J. Phase Equilibria. 2003. V. 24. P. 212. https://doi.org/10.1361/105497103770330514
  31. 31. Murray J.L. // Bull. Alloy Phase Diagrams. 1986. V. 7. P. 156. https://doi.org/10.1007/BF02881555
  32. 32. Pérez R.J., Massih A.R. // J. Nucl. Mater. 2007. V. 360. P. 242. https://doi.org/10.1016/j.jnucmat.2006.10.008
  33. 33. Okamoto H. // J. Phase Equilibria Diffus. 2011. V. 32. P. 473. https://doi.org/10.1007/s11669-011-9935-5
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library