Показана возможность образования проводящего металлополимерного композита на основе массива пересекающихся серебросодержащих нанопроволок. Электрические и механические характеристики композитов зависят как от времени осаждения, так и от отношения площадей анода и катода. Механические характеристики полученных металлополимерных композитов выше по сравнению с полимерными трековыми мембранами из полиэтилентерефталата. С увеличением отношения площадей анода и катода и времени осаждения падают электропроводимость (0.0025 Ом–1 при 100 циклах роста, 0.0033 Ом–1 при 50 циклах), прочность (90 МПа при 100 циклах, 99 МПа при 50 циклах) и модуль упругости (4.7 ГПа при 100 циклах, 5.4 ГПа при 50 циклах).Проводящие серебросодержащие нанопроволоки могут играть роль армирующих структур для проводящих металлополимерных композитов, обладающих высокой электропроводностью, и применяться в элементах гибкой электроники.
Модифицированным методом Обреимова–Шубникова получены поликристаллические слитки Cd\(_{{1--{х}}}\)ZnхTe (x = 0.005, 0.03, 0.05). Отобранные монокристаллические блоки изучены методами рентгенофазового анализа, измерения электрических характеристик и магнитометрии. Исследована концентрационная зависимость изменения магнитных и электрических свойств кристаллов. Установлено, что при концентрации Zn (x = 0.03, 0.05) наблюдается ферромагнитное упорядочение в кластерах (включениях), содержащих железо и/или никель при 2 К, чего не наблюдается на образцах Cd\(_{{1--{х}}}\)ZnхTe (x = 0.005).
Выращены массивы микрокристаллов ZnO методом газофазного осаждения по механизму пар–жидкость–кристалл, где жидкая фаза – золото, на кремниевой подложке (111). Описаны различия в полученных кристаллах при времени роста 5, 10 и 15 мин. Рассчитаны параметры решеток микрокристаллов по мере увеличения времени роста: а = 3.316, c = 5.281; а = 3.291, c = 5.270; а = 3.286, c = 5.258 Å. Установлено изменение содержания Au в микрокристаллах по мере их роста, от 0.520 ат. % у подложки до 0.035 ат. % на поверхности кристаллов, после 15 мин роста. Приведены карты распределения элементов, дано объяснение различия параметров решеток полученных кристаллов с эталонными значениями.
Методом термического напыления из газовой фазы выращены тонкие пленки CdTe на подложках Si (111) и Al2O3 (0001). Полученные пленки изучены методами атомно-силовой и растровой электронной микроскопии, а также рентгенофазового анализа. Обнаружено, что на подложках Al2O3 (0001) возможно получение тонких пленок как вюрцитной модификации CdTe, так и сфалеритной. На подложках Si возможно получение тонких пленок сфалеритной модификации CdTe. Показано, что элементный состав тонких пленок близок к стехиометрии, причем в случае тонких пленок, выращенных на Al2O3 (0001), отклонение не превышало 1 ат. %.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации