Впервые в виде монокристаллов получено новое координационное соединение – производное аза-14-краун-4-эфира, содержащего этоксикарбонильную субъединицу, с нитратом никеля(II) состава [Ni3(NO3)4L4]2(NO3). Присутствие атомов никеля в комплексе подтверждено методом рентгенофлуоресцентного анализа, структура комплекса изучена методом прецизионного рентгеноструктурного анализа на лабораторном рентгеновском источнике. Показано, что молекула комплекса имеет сложную геометрию и состоит из четырех попарно симметричных молекул лиганда, координированных тремя атомами никеля. Стабилизация молекулы комплекса обеспечивается наличием прочных внутримолекулярных водородных связей, в которых участвует краун-эфирный фрагмент.
Модифицированным методом Обреимова–Шубникова получены поликристаллические слитки Cd\(_{{1--{х}}}\)ZnхTe (x = 0.005, 0.03, 0.05). Отобранные монокристаллические блоки изучены методами рентгенофазового анализа, измерения электрических характеристик и магнитометрии. Исследована концентрационная зависимость изменения магнитных и электрических свойств кристаллов. Установлено, что при концентрации Zn (x = 0.03, 0.05) наблюдается ферромагнитное упорядочение в кластерах (включениях), содержащих железо и/или никель при 2 К, чего не наблюдается на образцах Cd\(_{{1--{х}}}\)ZnхTe (x = 0.005).
Выращены массивы микрокристаллов ZnO методом газофазного осаждения по механизму пар–жидкость–кристалл, где жидкая фаза – золото, на кремниевой подложке (111). Описаны различия в полученных кристаллах при времени роста 5, 10 и 15 мин. Рассчитаны параметры решеток микрокристаллов по мере увеличения времени роста: а = 3.316, c = 5.281; а = 3.291, c = 5.270; а = 3.286, c = 5.258 Å. Установлено изменение содержания Au в микрокристаллах по мере их роста, от 0.520 ат. % у подложки до 0.035 ат. % на поверхности кристаллов, после 15 мин роста. Приведены карты распределения элементов, дано объяснение различия параметров решеток полученных кристаллов с эталонными значениями.
Исследованы нанопроволоки из сплавов FexCoyCu(100–x–y) и FexNiyCu(100–x–y). Изучены особенности получения таких структур методом матричного синтеза. Элементный анализ нанопроволок, выращенных при последовательно увеличивающихся напряжениях, выявил значительное уменьшение количества меди, а также изменение соотношения основных магнитных элементов. Методом рентгенофазового анализа показано, что FeCoCu является трехкомпонентным твердым раствором, а FeNiCu содержит три фазы твердых растворов – FeCu с содержанием Cu до 80%, FeNi с высоким содержанием железа, а также NiCu в аморфном или мелкокристаллическом состоянии с содержанием Ni до 80%. Методом мессбауэровской спектроскопии выявлено, что добавление меди может приводить к изменению угла разориентации магнитных моментов в нанопроволоках, что коррелирует с данными магнитометрии.
Методом Багдасарова выращены из расплава монокристаллы иттрий-алюминиевого граната, в том числе легированные церием. Проведено сравнительное спектроскопическое исследование образцов монокристаллов граната и специально изготовленной керамики аналогичного состава. Сравнительный анализ позволяет предположить, что увеличение концентрации ионов церия в кристаллах граната улучшает их спектрально-люминесцентные и сцинтилляционные характеристики, а также способствует эффективному тушению люминесценции основы. Предложены пути оптимизации условий синтеза для повышения эффективности сцинтилляторов на основе кристаллов граната {Y\(_{{1--x}}\)Cex}3Al5O12.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation