Автоионные источники для исследования и модификации структуры аморфных и кристаллических материалов
Автоионные источники для исследования и модификации структуры аморфных и кристаллических материалов
Аннотация
Код статьи
S0023476124010029-1
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Петров Ю. В.  
Аффилиация: Санкт-Петербургский государственный университет
Страницы
5-20
Аннотация
Описаны системы со сфокусированным ионным пучком, использующие газовые автоионные источники. В историческом контексте рассмотрены принципы работы таких источников и способы их формирования, эффективная область ионизации в которых определяется размерами одного атома. Описываемые системы имеют широкий спектр приложений как в области сканирующей ионной микроскопии в сочетании с различными аналитическими методами, так и в области модификации с высоким разрешением электрических, оптических, магнитных и других свойств материалов. Такая модификация основана на ионно-индуцированном изменении структуры материала и наиболее ярко выражена в кристаллических полупроводниках, сверхпроводниках и магнетиках.
Классификатор
Получено
18.05.2024
Всего подписок
0
Всего просмотров
12
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Gianuzzi L.A., Stevie F.A. Introduction to Focused Ion Beams. New York: Springer, 2005. 357 p. https://doi.org/10.1007/b101190

2. Мажаров П., Дудников В.Г., Толстогузов А.В. // Успехи физ. наук. 2020. Т. 190. № 12. С. 1293. https://doi.org/10.3367/UFNr.2020.09.038845

3. Bischoff L., Mazarov P., Bruchhaus L. et al. // Appl. Phys. Rev. 2016. V. 3. P. 021101. https://doi.org/10.1063/1.4947095

4. Толстогузов А.Б., Белых С.Ф., Гуров В.С. и др. // Приборы и техника эксперимента. 2015. № 1. С. 5. https://doi.org/10.7868/S0032816215010115

5. Smith N.S., Skoczylas W.P., Kellogg S.M. et al. // J. Vac. Sci. Technol. B. 2006. V. 24. № 6. P. 2902. https://doi.org/10.1116/1.2366617

6. Smith N.S., Notte J.A., Steele A.V. // MRS Bull. 2014. V. 39. P. 329. https://doi.org/10.1557/mrs.2014.53

7. Escovitz W.H., Fox T.R., Levi-Setti R. // Proc. Nat. Acad. Sci. 1975. V. 72. P. 1826. https://doi.org/10.1073/pnas.72.5.1826

8. Hlawacek G., Gölzhäuser A. Helium Ion Microscopy. Cham: Springer, 2016. 526 p. https://doi.org/10.1007/978-3-319-41990-9

9. McClelland J.J., Steele A.V., Knuffman B. et al. // Appl. Phys. Rev. 2016. V. 3. P. 011302. https://doi.org/10.1063/1.4944491

10. Nabhiraj P.Y., Menon R., Mohan Rao G. et al. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 621. P. 57. https://doi.org/10.1016/j.nima.2010.04.069

11. Montaser A., Chan S.K., Koppenaal D.W. // Anal. Chem. 1987. V. 59. № 8. P. 1240. https://doi.org/10.1021/ac00135a038

12. Menon R., Nabhiraj P.Y., Bhandari R.K. // Vacuum. 2013. V. 97. P. 71. https://doi.org/10.1016/j.vacuum.2013.04.008

13. Oishi K., Okumoto T., Iino T. et al. // Spectrochim. Acta. B. 1994. V. 49. № 9. P. 901. https://doi.org/10.1016/0584-8547 (94)80079-0

14. Muramatsu M., Kitagawa A. // Rev. Sci. Instrum. 2012. V. 83. P. 02B909. https://doi.org/10.1063/1.3671744

15. Gushenets V.I., Bugaev A.S., Oks E.M. et al. // Rev. Sci. Instrum. 2012. V. 83. P. 02B311. https://doi.org/10.1063/1.3672112

16. Hahto S.K., Hahto S.T., Kwan J.W. et al. // Rev. Sci. Instrum. 2003. V. 74. P. 2987. https://doi.org/10.1063/1.1571973

17. Orloff J., Swanson L.W. // J. Appl. Phys. 1979. V. 50. P. 6026. https://doi.org/10.1063/1.326679

18. Jousten K., Böhringer K., Börret R. et al. // Ultramicroscopy. 1988. V. 26. P. 301. https://doi.org/10.1016/0304-3991 (88)90229-X

19. Жуков В.А., Калбитцер З. // Микроэлектроника. 2011. Т. 40. С. 21.

20. Kuo H.-S., Hwang I.-S., Fu T.-Y. et al. // Appl. Phys. Lett. 2008. V. 92. P. 063106. https://doi.org/10.1063/1.2844851

21. Shichi H., Matsubara S., Hashizume T. // Microsc. Microanal. 2019. V. 25. P. 105. https://doi.org/10.1017/S1431927618016227

22. Schmidt M.E., Yasaka A., Akabori M. et al. // Microsc. Microanal. 2017. V. 23. P. 758. https://doi.org/10.1017/s1431927617000502

23. Fedkiwa T.P., Lozano P.C. // J. Vac. Sci. Technol. B. 2009. V. 27. P. 2648. https://doi.org/10.1116/1.3253604

24. Müller E.W., Bahadur K. // Phys. Rev. 1956. V. 102. P. 624. https://doi.org/10.1103/PhysRev.102.624

25. Müller E.W. // Adv. Electron. Electron Phys. 1960. V. 13. P. 83. https://doi.org/10.1016/S0065-2539 (08)60210-3

26. Мюллер Э., Цонь Т. Автоионная микроскопия (принципы и применение). М.: Металлургия, 1972. 360 с.

27. Orloff J.H., Swanson L.W. // J. Vac. Sci. Technol. 1975. V. 12. P. 1209. https://doi.org/10.1116/1.568497

28. Orloff J.H., Swanson L.W. // J. Vac. Sci. Technol. 1978. V. 15. P. 845. https://doi.org/10.1116/1.569610

29. Allan G.L., Legge G.J.F., Zhu J. // Nucl. Instrum. Methods Phys. Res. B. 1988. V. 34. P. 122. https://doi.org/10.1016/0168-583X (88)90374-6

30. Colman R.A., Allan G.L., Legge G.J.F. // Rev. Sci. Instrum. 1992. V. 63. P. 5653. https://doi.org/10.1063/1.1143396

31. Borret R., Jousten K., Bohringer K. et al. // J. Phys. Appl. Phys. 1988. V. 21. P. 1835. https://doi.org/10.1088/0022-3727/21/12/031

32. Kalbitzer S., Knoblauch A. // Appl. Phys. A. 2004. V. 78. P. 269. https://doi.org/10.1007/s00339-003-2218-1

33. Tondare V.N. // J. Vac. Sci. Technol. A. 2005. V. 23. P. 1498. https://doi.org/10.1116/1.2101792

34. Павлов В.Г. // ФТТ. 2006. Т. 48. Вып. 5. С. 912.

35. Павлов В.Г. // ФТТ. 2007. Т. 49. Вып. 8. С. 1504.

36. Morgan J., Notte J., Hill R. et al. // Microscopy Today. 2006. V. 14. P. 24. https://doi.org/10.1017/S1551929500050240

37. Ward B.W., Notte J.A., Economou N.P. // J. Vac. Sci. Technol. B. 2006. V. 24. P. 2871. https://doi.org/10.1116/1.2357967

38. Fu T.-Y., Cheng L.-C., Nien C.-H. et al. // Phys. Rev. B. 2001. V. 64. P. 113401. https://doi.org/10.1103/PhysRevB.64.113401

39. Kuo H.-S., Hwang I.-S., Fu T.-Y. et al. // Appl. Phys. Lett. 2008. V. 92. Р. 063106. https://doi.org/10.1063/1.2844851

40. Lai W.-C., Lin C.-Y., Chang W.-T. et al. // Nanotechnology. 2017. V. 28. P. 255301. https://doi.org/10.1088/1361-6528/aa6ed3

41. Kuo H.-S., Hwang I.-S., Fu T.-Y. et al. // Nano Lett. 2004. V. 4. P. 2379. https://doi.org/10.1021/nl048569b

42. Chang W.-T., Hwang I.-S., Kuo H.-S. et al. // Microsc. Microanal. 2013. V. 19. P. 382. https://doi.org/10.1017/S1431927613003905

43. Rezeq M., Pitters J., Wolkow R. // J. Chem. Phys. 2006. V. 124. P. 204716. https://doi.org/10.1063/1.219853

44. Urban R., Wolkow R.A., Pitters J.L. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 31. https://doi.org/10.1007/978-3-319-41990-9_2

45. Matsubara S., Shichi H., Kawanami Y. et al. // Microsc. Microanal. 2016. V. 22. P. 614. https://doi.org/10.1017/S1431927616003925

46. Notte J., Faridur Rahman F.H.M., McVey S. et. al. // Microsc. Microanal. 2010. V. 16. P. 28. https://doi.org/10.1017/S1431927610061477

47. Schmidt M.E., Ogawa S., Mizuta H. // MRS Adv. 2018. V. 3. P. 505. https://doi.org/10.1557/adv.2018.33

48. Everhart T.E., Thornley R.F.M. // J. Sc. Instrum. 1960. V. 37. P. 246. https://doi.org/10.1088/0950-7671/37/7/307

49. Петров Ю.В., Вывенко О.Ф., Бондаренко А.С. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2010. № 9. С. 109.

50. Petrov Yu., Vyvenko O. // Proc. SPIE. 2011. V. 8036. P. 80360O. https://doi.org/10.1117/12.886347

51. Petrov Yu.V., Vyvenko O.F. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 119. https://doi.org/10.1007/978-3-319-41990-9_5

52. Anikeva A.E., Petrov Yu.V., Vyvenko O.F. // AIP Conf. Proc. 2019. V. 2064. P. 020001. https://doi.org/10.1063/1.5087657

53. Ishitani N., Yamanaka T., Inai K. et al. // Vacuum. 2009. V. 84. P. 1018. https://doi.org/10.1016/j.vacuum.2009.12.010

54. Petrov Yu.V., Anikeva A.E., Vyvenko O.F. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 425. P. 11. https://doi.org/10.1016/j.nimb.2018.04.001

55. Ohya K. // J. Vac. Sci. Technol. B. 2014. V. 32. P. 06FC01. https://doi.org/10.1116/1.4896337

56. Михайловский В.Ю., Петров Ю.В., Вывенко О.Ф. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2015. № 2. С. 93.

57. Stehling N., Masters R., Zhou Y. et al. // MRS Commun. 2018. V. 8. P. 226. https://doi.org/10.1557/mrc.2018.75

58. Jepson M.A.E., Inkson B.J., Rodenburg C. et al. // Europhys. Lett. 2009. V. 85. P. 46001. https://doi.org/10.1209/0295-5075/85/46001

59. Rodenburg C., Jepson M.A.E., Inkson B.J. et al. // J. Phys.: Conf. Ser. 2010. V. 241. P. 012076. https://doi.org/10.1088/1742-6596/241/1/012076

60. Chee A.K.W., Boden S.A. // Ultramicroscopy. 2016. V. 161. P. 51. https://doi.org/10.1016/j.ultramic.2015.10.003

61. Bell D.C. // Microsc. Microanal. 2009. V. 15. P. 147. https://doi.org/10.1017/S1431927609090138

62. Kostinski S., Yao N. // J. Appl. Phys. 2011. V. 109. P. 064311. https://doi.org/10.1063/1.3549016

63. Veligura V., Hlawacek G., van Gastel R. et al. // Beilstein J. Nanotechnol. 2012. V. 3. P. 501. https://doi.org/10.3762/bjnano.3.57

64. Hlawacek G., Veligura V., van Gastel R. et al. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 205. https://doi.org/10.1007/978-3-319-41990-9_9

65. Notte J., Hill R., McVey S.M. et al. // Microsc. Microanal. 2010. V. 16. P. 599. https://doi.org/10.1017/S1431927610093682

66. Zweifel L.P., Shorubalko I., Lim R.Y.H. // ACS Nano. 2016. V. 10. P. 1918. https://doi.org/10.1021/acsnano.5b05754

67. Woehl T.J., White R.M., Keller R.R. // Microsc. Microanal. 2016. V. 22. P. 544. https://doi.org/10.1017/S1431927616000775

68. Kavanagh K.L., Herrmann C., Notte J.A. // J. Vac. Sci. Technol. B. 2017. V. 35. P. 06G902. https://doi.org/10.1116/1.4991898

69. Mousley M., Eswara S., De Castro O. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1648. https://doi.org/10.3762/bjnano.10.160

70. Serralta E., Klingne N., De Castro O. et al. // Beilstein J. Nanotechnol. 2020. V. 11. P. 1854. https://doi.org/10.3762/bjnano.11.167

71. Petrov Yu.V., Vyvenko O.F. // Beilstein J. Nanotechnol. 2015. V. 6. P. 1125. https://doi.org/10.3762/bjnano.6.114

72. Boden S.A., Franklin T.M.W., Scipioni L. et al. // Microsc. Microanal. 2012. V. 18. P. 1253. https://doi.org/10.1017/S1431927612013463

73. Veligura V., Hlawacek G., Jahn U. et al. // J. Appl. Phys. 2014. V. 115. P. 183502. https://doi.org/10.1063/1.4875480

74. Veligura V., Hlawacek G., van Gastel R. et al. // J. Phys.: Condens. Matter. 2014. V. 26. P. 165401. https://doi.org/10.1088/0953-8984/26/16/165401

75. Veligura V., Hlawacek G. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 325. https://doi.org/10.1007/978-3-319-41990-9_14

76. Heller R., Klingner N., Hlawacek G. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 265. https://doi.org/10.1007/978-3-319-41990-9_12

77. Klingner N., Heller R., Hlawacek G. et al. // Ultramicroscopy. 2016. V. 162. P. 91. https://doi.org/10.1016/j.ultramic.2015.12.005

78. Wirtz T., Vanhove N., Pillatsch L. et al. // Appl. Phys. Lett. 2012. V. 101. P. 041601. https://doi.org/10.1063/1.4739240

79. Pillatsch L., Vanhove N., Dowsett D. et al. // App. Surf. Sci. 2013. V. 282. P. 908. https://doi.org/10.1016/j.apsusc.2013.06.088

80. Wirtz T., Dowsett D., Philipp P. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 297. https://doi.org/10.1007/978-3-319-41990-9_13

81. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091

82. Klingner N., Hlawacek G., Mazarov P. et al. // Beilstein J. Nanotechnol. 2020. V. 11. P. 1742. https://doi.org/10.3762/bjnano.11.156

83. Bell D.C., Lemme M.C., Stern L.A. et al. // Nanotechnology. 2009. V. 20. P. 455301. https://doi.org/10.1088/0957-4484/20/45/455301

84. Lemme M.C., Bell D.C., Williams J.R. et al. // ACSNano. 2009. V. 3. P. 2674. https://doi.org/10.1021/nn900744z

85. Kalhor N., Boden S.A., Mizuta H. // Microelectron. Eng. 2014. V. 114. P. 70. https://doi.org/10.1016/j.mee.2013.09.018

86. Iberi V., Vlassiouk I., Zhang X.-G. et al. // Sci. Rep. 2015. V. 5. P. 11952. https://doi.org/10.1038/srep11952

87. Deng Y., Huang Q., Zhao Y. et al. // Nanotechnology. 2017. V. 28. P. 045302. https://doi.org/10.1088/1361-6528/28/4/045302

88. Archanjo B.S., Fragneaud B., Cancado L.G. et al. // Appl. Phys. Lett. 2014. V. 104. P. 193114. https://doi.org/10.1063/1.4878407

89. Wang Y., Abb M., Boden S.A. et al. // Nano Lett. 2013. V. 13. P. 5647. https://doi.org/10.1021/nl403316z

90. Zhang C., Li J., Belianinov A. et al. // Nanotechnology. 2020. V. 31. P. 465302. https://doi.org/10.1088/1361-6528/abae99

91. Kuznetsov A.I., Miroshnichenko A.E., Fu Y.H. et al. // Nature Commun. 2014. V. 5. P. 3104. https://doi.org/10.1038/ncomms4104

92. Emmrich D., Beyer A., Nadzeyka A. et al. // Appl. Phys. Lett. 2016. V. 108. P. 163103. https://doi.org/10.1063/1.4947277

93. Sawafta F., Carlsen A.T., Hall A.R. // Sensors. 2014. V. 14. P. 8150. https://doi.org/10.3390/s140508150

94. Carlsen A.T., Briggs K., Hall A.R. et al. // Nanotechnology. 2017. V. 28. P. 085304. https://doi.org/10.1088/1361-6528/aa564d

95. Marshall M.M., Yag J., Hall A.R. // Scanning. 2012. V. 34. P. 101. https://doi.org/10.1002/sca.21003

96. Zahid O.K., Hall A.R. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 447. https://doi.org/10.1007/978-3-319-41990-9_18

97. Латышев Ю.И., Орлов А.П., Фролов А.В. и др. // Письма в ЖЭТФ. 2013. Т. 98. С. 242. https://doi.org/10.7868/S0370274X13160066

98. Fox D., Zhou Y.B., O’Neill A. et al. // Nanotechnology. 2013. V. 24. P. 335702. https://doi.org/10.1088/0957-4484/24/33/335702

99. Iberi V., Ievlev A.V., Vlassiouk I. et al. // Nanotechnology. 2016. V. 27. Р. 125302. https://doi.org/10.1088/0957-4484/27/12/125302

100. Araujo E.N.D., Brant J.C., Archanjo B.S. et al. // Phys. Rev. B. 2015. V. 91. P. 245414. https://doi.org/10.1103/PhysRevB.91.245414

101. Nanda G., Hlawacek G., Goswami S. et al. // Carbon. 2017. V. 119. P. 419e425. https://doi.org/10.1016/j.carbon.2017.04.062

102. Zhou Y., Maguire P., Jadwiszczak J. et al. // Nanotechnology. 2016. V. 27. P. 325302. https://doi.org/10.1088/0957-4484/27/32/325302

103. Latyshev Yu.I., Orlov A.P., Volkov V.A. et al. // Sci. Rep. 2014. V. 4. P. 7578. https://doi.org/10.1038/srep07578

104. Fox D.S., Zhou Y., Maguire P. et al. // Nano Lett. 2015. V. 15. P. 5307. https://doi.org/10.1021/acs.nanolett.5b01673

105. Stanford M.G., Pudasaini P.R., Belianinov A. et al. // Sci. Rep. 2016. V. 6. P. 27276. https://doi.org/10.1038/srep27276

106. Iberi V., Liang L., Ievlev A.V. et al. // Sci. Rep. 2016. V. 6. P. 30481. https://doi.org/10.1038/srep30481

107. Watt F., Breese M.B.H., Bettiol A.A. et al. // Mater. Today. 2007. V. 10. P. 20. https://doi.org/10.1016/S1369-7021 (07)70129-3

108. Sidorkin V., van Veldhoven E., van der Drift E. et al. // J. Vac. Sci. Technol. B. 2009. V. 27. P. L18. https://doi.org/10.1116/1.3182742

109. Li W.-D., Wu W., Stanley Williams R. // J. Vac. Sci. Technol. B. 2012. V. 30. P. 06F304. https://doi.org/10.1116/1.4758768

110. Kalhor N., Alkemade P.F.A. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 395. https://doi.org/10.1007/978-3-319-41990-9_16

111. Petrov Y.V., Sharov T.V., Baraban A.P. et al. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 349. P. 90. https://doi.org/10.1016/j.nimb.2015.02.054

112. Petrov Y.V., Grigoryev E.A., Sharov T.V. et al. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 418. P. 94. https://doi.org/10.1016/j.nimb.2018.01.011

113. Petrov Y.V., Ubyivovk E.V., Baraban A.P. // AIP Conf. Proc. 2019. V. 2064. P. 030012. https://doi.org/10.1063/1.5087674

114. Petrov Y.V., Grigoryev E.A., Baraban A.P. // Nanotechnology. 2020. V. 31. P. 215301. https://doi.org/10.1088/1361-6528/ab6fe3

115. Kapitonov Yu.V., Shapochkin P. Yu., Petrov Yu.V. et al. // Phys. Status. Solidi. B. 2015. V. 252. P. 1950. https://doi.org/10.1002/pssb.201451611

116. Kapitonov Yu.V., Shapochkin P. Yu., Beliaev L. Yu. et al. // Opt. Lett. 2015. V. 41. P. 104. https://doi.org/10.1364/OL.41.000104

117. Shapochkin P. Yu., Petrov Yu.V., Eliseev S.A. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. P. 1505. https://doi.org/10.1364/JOSAA.36.001505

118. White A.E., Short K.T., Dynes R.C. et al. // Appl. Phys. Lett. 1988. V. 53. P. 1010. https://doi.org/10.1063/1.100652

119. Cybart S.A., Cho E.Y., Wong T.J. et al. // Nature Nanotechnol. 2015. V. 10. P. 598. https://doi.org/10.1038/nnano.2015.76

120. Cho E.Y., Ma M.K., Huynh C. et al. // Appl. Phys. Lett. 2015. V. 106. P. 252601. https://doi.org/10.1063/1.4922640

121. Cybart S.A., Bali R., Hlawacek G. et al. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 415. https://doi.org/10.1007/978-3-319-41990-9_17

122. Kasaei L., Melbourne T., Manichev V. et al. // AIP Adv. 2018. V. 8. P. 075020. https://doi.org/10.1063/1.5030751

123. Fowley C., Diao Z., Faulkner C.C. et al. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 195501. https://doi.org/10.1088/0022-3727/46/19/195501

124. Татарский Д.А., Гусев Н.С., Михайловский В.Ю. и др. // ЖТФ. 2019. Т. 89. С. 1674. https://doi.org/10.21883/JTF.2019.11.48327.135-19

125. Sapozhnikov M.V., Vdovichev S.N., Ermolaeva O.L. et al. // Appl. Phys. Lett. 2016. V. 109. P. 042406. https://doi.org/10.1063/1.4958300

126. Sapozhnikov M.V., Petrov Yu.V., Gusev N.S. et al. // Materials. 2020. V. 13. P. 99. https://doi.org/10.3390/ma13010099

127. Samad F., Hlawacek G., Arekapudi S.S.P.K. et al. // Appl. Phys. Lett. 2021. V. 119. P. 022409. https://doi.org/10.1063/5.0049926

128. Sapozhnikov M.V., Gusev N.S., Gusev S.A. et al. // Phys. Rev. B. 2021. V. 103. P. 054429. https://doi.org/10.1103/PhysRevB.103.054429

129. Kurian J., Joseph A., Cherifi-Hertel S. et al. // Appl. Phys. Lett. 2023. V. 122. 032402. https://doi.org/10.1063/5.0131188

130. Röder F., Hlawacek G., Wintz S. et al. // Sci. Rep. 2015. V. 5. P. 16786. https://doi.org/10.1038/srep16786

131. Nord M., Semisalova A., Kákay A. et al. // Small. 2019. V. 15. P. 1904738. https://doi.org/10.1002/smll.201904738

132. Cansever H., Anwar Md.S., Stienen S. et al. // Sci. Rep. 2022. V. 12. P. 14809. https://doi.org/10.1038/s41598-022-15959-0

133. Chen P., van Veldhoven E., Sanford C.A. et al. // Nanotechnology. 2010. V. 2. 455302. https://doi.org/10.1088/0957-4484/21/45/455302

134. Alkemade P.F.A., Miro H. // Appl. Phys. A. 2014. V. 117. P. 1727. https://doi.org/10.1007/s00339-014-8763-y

135. Shorubalko I., Pillatsch L., Utke I. // Helium Ion Microscopy / Ed. Hlawacek G., Gölzhäuser A. Springer, 2016. P. 355. https://doi.org/10.1007/978-3-319-41990-9_15

136. Córdoba R., Ibarra A., Mailly D. et al. // Beilstein J. Nanotechnol. 2020. V. 11. P. 1198. https://doi.org/10.3762/bjnano.11.104

137. Joens M.S., Huynh C., Kasuboski J.M. et al. // Sci. Rep. 2013. V. 3. P. 3514. https://doi.org/10.1038/srep03514

Комментарии

Сообщения не найдены

Написать отзыв
Перевести