Исследование поверхностного магнетизма в системах на основе MnBi<sub>2</sub>Te<sub>4</sub> с использованием магнитооптического эффекта Керра
Исследование поверхностного магнетизма в системах на основе MnBi<sub>2</sub>Te<sub>4</sub> с использованием магнитооптического эффекта Керра
Аннотация
Код статьи
S0023476124010155-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Глазкова Д. А.  
Аффилиация: Санкт-Петербургский государственный университет
Страницы
105-110
Аннотация
Материалы MnBi2Te4, Mn(Bi,Sb)2Te4 и MnBi2Te4(Bi2Te3)m (где m ≥ 1) относятся к классу магнитных топологических изоляторов. Для успешного применения данных материалов в устройствах наноэлектроники необходимо всестороннее изучение их электронной структуры и магнитных свойств в зависимости от соотношения атомов Bi/Sb и количества (m) блоков Bi2Te3. Изучались магнитные свойства поверхности соединений MnBi2Te4, MnBi4Te7 и Mn(Bi1–xSbx)2Te4 (где x = 0.43, 0.32) при помощи магнитооптического эффекта Керра. Показано, что температуры магнитных переходов на поверхности и в объеме MnBi4Te7 и Mn(Bi,Sb)2Te4 существенно различаются.
Источник финансирования
Правительство РФ. Российский научный фонд (23-12-00016). Санкт-Петербургский государственный университет (94031444).
Классификатор
Получено
18.05.2024
Всего подписок
0
Всего просмотров
11
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Smejkal L., Mokrousov Y., Binghai Yan et al. // Nature Phys. 2018. V. 14. P. 242. https://doi.org/10.1038/s41567-018-0064-5

2. Tokura Y., Yasuda K., Tsukazaki A. // Nat. Rev. Phys. 2019. V. 1. P. 126. https://doi.org/10.1038/s42254-018-0011-5

3. Hasan M.Z., Kane C.L. // Rev. Mod. Phys. 2010. V. 82. art. 3045. https://doi.org/10.1103/RevModPhys.82.3045

4. Xiao-Liang Qi, Shou-Cheng Zhang // Rev. Mod. Phys. 2011. V. 83. art. 1057. https://doi.org/10.1103/RevModPhys.83.1057

5. Chao-Xing Liu, Xiao-Liang Qi, Xi Dai et al. // Phys. Rev. Lett. 2008. V. 101. art. 146802. https://doi.org/10.1103/PhysRevLett.101.146802

6. Rui Yu, Wei Zhang, Hai-Jun Zhang et al. // Science. 2010. V. 329. P. 61. https://doi.org/10.1126/science.1187485

7. Cui-Zu Chang, Jinsong Zhang, Xiao Geng et al. // Science. 2013. V. 340. P. 167. https://doi.org/10.1126/science.1234414

8. Xiao-Liang Qi, Taylor L. Hughes, Shou-Cheng Zhang // Phys. Rev. B. 2008. V. 78. art. 195424. https://doi.org/10.1103/PhysRevB.78.195424

9. Mogi M., Kawamura M., Yoshimi R. et al. // Nat. Mater. 2017. V. 16. P. 516. https://doi.org/10.1038/nmat4855

10. Di Xiao, Jue Jiang, Jae-Ho Shin et al. // Phys. Rev. Lett. 2018. V. 120. art. 056801. https://doi.org/10.1103/PhysRevLett.120.056801

11. Xiangang Wan, Turner A.M., Vishwanath A. et al. // Phys. Rev. B. 2011. V. 83. art. 205101. https://doi.org/10.1103/PhysRevB.83.205101

12. Binghai Yan, Felser C. // Annu. Rev. Condens. Matter. Phys. 2017. V. 8. P. 337. https://doi.org/10.1146/annurev-conmatphys-031016-025458

13. Armitage N.P., Mele E.J., Vishwanath A. // Rev. Mod. Phys. 2018. V. 90. art № 015001. https://doi.org/10.1103/RevModPhys.90.015001

14. Otrokov M.M., Klimovskikh I.I., Bentmann H. et al. // Nature. 2019. V. 576. P. 416. https://doi.org/10.1038/s41586-019-1840-9

15. Shikin A.M., Estyunin D.A., Klimovskikh I.I. et al. // Sci. Rep. 2020. V. 10. art. 13226. https://doi.org/10.1038/s41598-020-70089-9

16. Shikin A.M., Makarova T.P., Eryzhenkov A.V. et al. // Phys. B. Condens. Matter. 2023. V. 649. art. 414443. https://doi.org/10.1016/j.physb.2022.414443

17. Шилкин А.М., Зайцев Н.Л., Тарасов А.В. и др. // Письма в ЖЭТФ. 2022. Т. 116. С. 544. https://doi.org/10.31857/S1234567822200083

18. Шилкин А.М., Естюнин Д.А., Глазкова Д.А. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 241. https://doi.org/10.31857/S1234567822040073

19. Глазкова ДА., Естюнин, Климовских И.И. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 315 https://doi.org/10.31857/S1234567822050081

20. Shikin A.M., Estyunin D.A., Zaitsev N.L. et al. // Phys. Rev. B. 2021. V. 104. art. 115168. https://doi.org/10.1103/PhysRevB.104.115168

21. Garnica M., Otrokov M.M., Casado Aguilar P. et al. // npj Quantum Mater. 2022. V. 7. art. 7. https://doi.org/10.1038/s41535-021-00414-6

22. Yu-Jie Hao, Pengfei Liu, Yue Feng et al. // Phys. Rev. X. 2019. V. 9. art. 041038. https://doi.org/10.1103/PhysRevX.9.041038

23. Eremeev S.V., Rusinov I.P., Koroteev Yu.M. et al. // J. Phys. Chem. Lett. 2021. V. 12. P. 4268. https://doi.org/10.1021/acs.jpclett.1c00875

24. Yan J.-Q., Zhang Q., Heitmann T. et al. // Phys. Rev. Mater. 2019. V. 3. art. 064202. https://doi.org/10.1103/PhysRevMaterials.3.064202

25. Bing Li, Yan J.-Q., Pajerowski D.M. et al. // Phys. Rev. Lett. 2020. V. 124. art. 167204. https://doi.org/10.1103/PhysRevLett.124.167204

26. Zeugner A., Nietschke F., Wolter A.U.B. et al. // Chem. Mater. 2019. V. 31. P. 2795. https://doi.org/10.1021/acs.chemmater.8b05017

27. Estyunin D.A., Klimovskikh I.I., Shikin A.M. et al. // APL Mater. 2020. V. 8. art. 021105. https://doi.org/10.1063/1.5142846

28. Lei C., Heinonen O., MacDonald A.H. et al. // Phys. Rev. Mater. 2021. V. 5. art. 064201. https://doi.org/10.1103/PhysRevMaterials.5.064201

29. Wenbo Ge, Jinwoong Kim, Ying-Ting Chan et al. // Phys. Rev. Lett. 2022. V. 129. art. 107204. https://doi.org/10.1103/PhysRevLett.129.107204

30. Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. // At. Data Nucl. Data Tables. 1979. V. 23. P. 443. https://doi.org/10.1016/0092-640X (79)90027-5

31. Rani P., Saxena A., Sultana R. et al. // J. Supercond. Nov. Magn. 2019. V. 32. P. 3705. https://doi.org/10.1007/s10948-019-05342-y

32. Боровик-Романов А.С., Крейнес Н.М., Панков А.А. и др. // ЖЭТФ. 1973. Т. 64. С. 1762.

33. Saidl V., Nemec P., Wadley P. et al. // Nat. Photon. 2017. V. 11. P. 91. https://doi.org/10.1038/nphoton.2016.255

34. Kexin Yang, Kisung Kang, Zhu Diao et al. // Phys. Rev. Mater. 2019. V. 3. art. 124408. https://doi.org/10.1103/PhysRevMaterials.3.124408

35. Klimovskikh I.I., Otrokov M.M., Estyunin D.A. et al. // npj Quantum Mater. 2020. V. 5. art. 54. https://doi.org/10.1038/s41535-020-00255-9

36. Chaowei Hu, Shang-Wei Lien, Erxi Feng et al. // Phys. Rev. B. 2021. V. 104. art. 054422. https://doi.org/10.1103/PhysRevB.104.054422

37. Bo Chen, Fucong Fei, Dongqin Zhang et al. // Nat. Commun. 2019. V. 10. art. 4469. https://doi.org/10.1038/s41467-019-12485-y

38. Глазкова Д.А., Естюнин Д.А., Климовских И.И. и др. // Письма в ЖЭТФ. 2022. Т. 116. С. 793. https://doi.org/10.31857/S1234567822230082

39. Yaohua Liu, Lin-Lin Wang, Qiang Zheng et al. // Phys. Rev. X. 2021. V. 11. art. 021033. https://doi.org/10.1103/PhysRevX.11.021033

Комментарии

Сообщения не найдены

Написать отзыв
Перевести