The theory of synchrotron radiation limited beams diffraction in single crystal in the Laue case
Table of contents
Share
QR
Metrics
The theory of synchrotron radiation limited beams diffraction in single crystal in the Laue case
Annotation
PII
S0023476124030019-1
Publication type
Article
Status
Published
Authors
V. G. Kohn 
Affiliation: Institute of Solid State Physics RAS
Pages
375-381
Abstract
The features of the Bragg diffraction of coherent synchrotron radiation on the atomic lattice of a single crystal in the Laue geometry are studied theoretically, provided that the radiation beam is limited by a relatively large slit placed in front of the crystal. The method of numerical simulation is used and dependences of the intensity distribution are obtained for various thicknesses of the crystal. It is shown that the slit edges introduce inhomogeneous intensity distortions inside the Bormann triangles with an angle of 2θB, where θB is the Bragg angle. In the area where the triangles intersect, the intensity distribution is similar to that for diffraction by a slit in air at a certain (large) distance. An equation for the correspondence between the distance and the thickness of the crystal is obtained, which describes well the results of numerical calculations.
Acknowledgment
The state task of the IFTT RAS. Ministry of Science and Higher Education of the Russian Federation, grant (075-15-2021-1362).
Received
03.09.2024
Number of purchasers
0
Views
21
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Born M., Wolf E. Principles of Optics. 7th ed. Cambridge: University Press, 2002. 952 p.

2. Kohn V., Snigireva I., Snigirev A. // Phys. Rev. Lett. 2000. V. 85. P. 2745.

3. Kohn V., Snigireva I., Snigirev A. // Opt. Commun. 2001. V. 198. P. 293.

4. Snigireva I., Kohn V., Snigirev A. // Nucl. Instrum. Methods. A. 2001. V. 467–468. P. 925.

5. Leitenberger W., Kuznetsov S.M., Snigirev A. // Opt. Commun. 2001. V. 191. P. 91.

6. Authier A. Dynamical Theory of X-ray Diffraction. 3rd ed. Oxford University Press, 2005. 696 p.

7. Pinsker Z.G. Dynamical Scattering of X-Rays in Crystals. Springer-Verlag, 1978. 390 p.

8. Balyan M.K. //Acta Cryst. A. 2010. V. 66. P. 660. https://doi.org/10.1107/S0108767310035944

9. Кон В.Г., Смирнова И.A. // Кристаллография. 2022. Т. 67. С. 185. https://doi.org/10.31857/S0023476122020084

10. Kohn V.G., Smirnova I.A. // Crystallography Reports. 2022. V. 67. P. 1068. https://doi.org/10.1134/S1063774522070446

11. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801

12. Authier A., Malgrange C., Tournarie M. // Acta Cryst. A. 1968. V. 24. P. 126. https://doi.org/10.1107/S0567739468000161

13. Слободецкий И.Ш., Чуховский Ф.Н. // Кристаллография. 1970. Т. 15. С. 1101.

14. Инденбом В.Л., Чуховский Ф.Н. // Успехи физ. наук. 1972. Т. 107. С. 229.

15. Кон В.Г. // Кристаллография. 2023. Т. 68. С. 196. https://doi.org/10.31857/S002347612302008X

16. Кон В.Г. http://xray-optics.ucoz.ru/XR/xrwp.htm

17. Toellner T.S. // Hyperfine Interact. 2000. V. 125. P. 3.

18. Cooley J.W., Tukey J.W. // Math. Comput. 1965. V. 19. P. 297.

19. Слободецкий И.Ш., Чуховский Ф.Н., Инденбом В.Л. // Письма в ЖЭТФ. 1968. Т. 8. С. 90.

20. Authier A., Simon D. // Acta Cryst. A. 1968. V. 24. P. 517.

21. Kohn V.G., Argunova T.S., Je J.H. // J. Phys. D. Appl. Phys. 2010. V. 43. P. 442002(3). https://doi.org/10.1088/0022-3727/43/44/442002

22. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature (London). 1996. V. 384. P. 49.

23. Афанасьев А.М., Кон В.Г. // ФТТ. 1977. Т. 19. С. 1775.

24. Кон В.Г. // http://kohnvict.ucoz.ru/jsp/3-difpar.htm

25. Kato N. // Acta Cryst. 1961. V. 14. P. 627. https://doi.org/10.1107/S0365110X61001947

Comments

No posts found

Write a review
Translate