The study of temperature properties of I.H.P. structure and its application for filters on surface acoustic waves
Table of contents
Share
QR
Metrics
The study of temperature properties of I.H.P. structure and its application for filters on surface acoustic waves
Annotation
PII
S0023476124040096-1
Publication type
Article
Status
Published
Authors
А. S. Koigerov 
Affiliation: Saint Petersburg Electrotechnical University “LETI”
О. Л. Балышева
Affiliation: Saint-Petersburg State University of Aerospace Instrumentation (SUAI)
Pages
639-645
Abstract
The results of investigation of temperature properties of I.H.P.-structures on multilayer lithium tantalate/silicon dioxide film/silicon substrate used to improve the characteristics of surface acoustic wave devices are presented. Finite element modeling of the test structures was performed in COMSOL software and the temperature frequency coefficient was calculated. A comparison of the calculated transmission coefficient of a resonator filter on a conventional 36°YX-cut lithium tantalate monocrystal substrate and an I.H.P.-filter at different temperature values is presented. The possibility of minimizing the temperature coefficient of frequency by selecting the thickness of the substrate layers is shown. Comparison of the obtained results with the known data showed good agreement. The practical significance consists in the use of modeling results and calculated parameters in the development of various classes of devices on multilayer substrates, including those with I.H.P.-structures.
Received
21.09.2024
Number of purchasers
0
Views
11
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Takai T., Iwamoto H., Takamine Y. et al. // Proc. of the 2016 IEEE Intern. Ultrason. Symp. (IUS), Tours, France, 18–21 September 2016. P. 1–4. https://doi.org/10.1109/ULTSYM.2016.7728455

2. Takai T., Iwamoto H., Takamine Y. et al. // Proc. of the 2016 IEEE MTT-S Intern. Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. P. 1–4. https://doi.org/10.1109/MWSYM.2016.7540214

3. Takai T., Iwamoto H., Takamine Y. et al. // Proc. of the 2017 IEEE Intern. Ultrason. Symp. (IUS), Washington, DC, USA, 6–9 September 2017. P. 1–8. https://doi.org/10.1109/ULTSYM.2017.8091876

4. Takai T., Iwamoto H., Takamine Y. et al. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019. V. 66. P. 1006. https://doi.org/10.1109/TUFFC.2019.2898046

5. Nagatomo S., Iwamoto H., Taniguchi Y. // Proc. Symposium on Ultrasonic Electronics. 2019. V. 40. P. 25. https://www.jstage.jst.go.jp/article/use/40/0/40_1P3-2/_pdf

6. Xiao Q., Dai M., Chen J. et al. // Acoust. Phys. 2019. V. 65. № 6. Р. 652.

7. Chen P., Li G., Zhu Z. // Micromachines. 2022. V. 13. P. 656. https://doi.org/10.3390/mi13050656

8. Qian Y., Shuai Y., Wu C. et al. // Piezoelectrics and Acoustooptics. 2023. V. 45. № 3. Р. 350.

9. Takamine Y., Takai T., Iwamoto H. et al. // Proc. of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018. P. 1342. https://doi.org/10.23919/APMC.2018.8617381

10. Kimura T., Omura M., Kishimoto Y., Hashimoto K. // IEEE MTT-S Intl. Microwave Symp. 2018. P. 846. https://doi.org/10.23919/APMC.2018.8617381

11. Nakagawa R., Iwamoto H., Takai T. // Jpn. J. Appl. Phys. 2020. V. 59. № SKKC09. https://doi.org/10.35848/1347-4065/ab867c

12. Qian Y., Shuai Y., Wu C. et al. // Micromachines. 2023. V. 14. P. 1929. https://doi.org/10.3390/mi14101929

13. Pan H., Yang Y., Li L. et al. // Micromachines. 2024. V. 15. P. 12. https://doi.org/10.3390/mi15010012

14. Zhang Q., Chen Z., Chen Y. et al. // Micromachines. 2021. V. 12. P. 141. https://doi.org/10.3390/mi12020141

15. Kovacs G., Anhorn M., Engan H. et al. // Proc. 1990 IEEE Ultrasonic Symposium Honolulu. Hawaii. Dec. 1990. V. 1. P. 435. https://doi.org/10.1109/ULTSYM.1990.171403

16. Aslam M.Z., Jeoti V., Karuppanan S. et al. // Proc. International Conference on Intelligent and Advanced System (ICIAS). 2018. P. 1. https://doi.org/10.1109/ICIAS.2018.8540581

17. Wang Y., Liu X., Shang S. et al. // Proc. 2019 14th Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). 2019. P. 1. https://doi.org/10.1109/SPAWDA48812.2019.9019330

18. Smith R.T., Welsh F.S. // J. Appl. Phys. 1971. V. 42. № 6. P. 2219. https://doi.org/10.1063/1.1660528

19. Ma R., Liu W., Sun X., Zhou S., Lin D. // Micromachines. 2022. V. 13. P. 202. https://doi.org/10.3390/mi13020202

20. Двоешерстов М.Ю., Петров С.Г., Чередник В.И., Чириманов А.П. // ЖТФ. 2001. Т. 71. № 4. С. 89.

21. Morita T., Watanabe Y., Tanaka M., Nakazawa Y. // IEEE Ultrason. Symp. Proc. 1992. P. 95. https://doi.org/10.1109/ULTSYM.1992.276057

22. Макаров В.М., Иванов П.Г., Данилов А.Л., Зая В.Г. // Радиотехника и электроника. 2008. Т. 53. № 3. С. 377.

23. Койгеров А.С., Балышева О.Л. // Радиотехника и электроника. 2022. Т. 67. № 11. С. 1152. https://doi.org/10.31857/S0033849422110055

Comments

No posts found

Write a review
Translate