Study of electrical properties and characterization of a metal-polymer conductor based on silver-containing nanowires
Table of contents
Share
QR
Metrics
Study of electrical properties and characterization of a metal-polymer conductor based on silver-containing nanowires
Annotation
PII
S0023476124040126-1
Publication type
Article
Status
Published
Authors
D. V. Panov 
Occupation: Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics
Affiliation: NRC “Kurchatov Institute”
Pages
661-669
Abstract
The possibility of forming a conductive metal-polymer composite based on an array of intersecting silver-containing nanowires has been demonstrated. It has been determined that the electrical and mechanical characteristics of the composites depend both on the deposition time and on the ratio of the anode to cathode areas. The resulting metal-polymer composites had mechanical characteristics exceeding those of polymer track membranes made of polyethylene terephthalate. At the same time, with an increase in the ratio of anode to cathode areas and an increase in deposition time, the samples exhibit a decrease in the values of electrical conductivity (0.0025 Ω-1 – at 100 growth cycles, 0.0033 Ω-1 – at 50 cycles), strength (90 MPa – at 100 cycles, 99 MPa – at 50 cycles) and elastic modulus (4.7 GPa – at 100 cycles, 5.4 GPa – at 50 cycles). The data obtained indicate that conductive silver-containing nanowires can be reinforcing structures for conductive metal-polymer composites with high electrical conductivity values, promising for use in flexible electronics elements.
Received
22.09.2024
Number of purchasers
0
Views
18
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Goki E., Fanchini G., Manish C. // Nature Nanotechnol. 2008. V. 3. P. 270. https://doi.org/10.1038/nnano.2008.83

2. Ye S., Rathmell A.R., Chen Z. et al. // Adv. Mater. 2014. V. 26. P. 6670. https://doi.org/10.1002/adma.201402710

3. Langley D., Giusti G., Mayousse C. et al. // Nanotechnology. 2013. V. 24. P. 452001. https://doi.org/10.1088/0957-4484/24/45/452001

4. Hecht D.S., Hu L., Irvin G. // Adv Mater. 2011. V. 23. P. 1482. https://doi.org/10.1002/adma.201003188

5. McCoul D., Hu W., Gao M. et al. // Adv. Electron. Mater. 2016. V. 2. P. 1500407. https://doi.org/10.1002/aelm.201500407

6. Kumar A., Zhou P. // ACS Nano. 2010. V. 4. P. 11. https://doi.org/10.1021/nn901903b

7. Mayousse C., Celle C., Moreau E. et al. // Nanotechnology. 2013. V. 24. P. 215501. https://doi.org/10.1088/0957-4484/24/21/215501

8. Kwon J., Suh Y.D., Lee J. et al. // J. Mater. Chem. 2018. V. 6. P. 7445. https://doi.org/10.1039/c8tc01024b

9. Celle C., Mayousse C., Moreau E. et al. // Nano Res. 2012. V. 5. P. 427. https://doi.org/10.1007/s12274-012-0225-2

10. Jiu J., Suganuma K. // IEEE Trans. Components, Packaging Manufactur. Technol. 2016. V. 6. P. 1733. https://doi.org/10.1109/tcpmV.2016.2581829

11. Lan W., Chen Y., Yang Z. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 7. P. 6644. https://doi.org/10.1021/acsami.6b16853

12. Kaikanov M., Amanzhulov B., Demeuova G. et al. // Nanomaterials (Basel). 2020. V. 10. P. 2153. https://doi.org/10.3390/nano10112153

13. Kim Y.J., Kim G., Kim H.-K. // Metals. 2019. V. 9. P. 1073. https://doi.org/10.3390/met9101073

14. Seo V.H., Lee S., Min K.H. et al. // Sci. Rep. 2016. V. 6. P. 29464. https://doi.org/10.1038/srep29464

15. Pham S.H., Ferri A., Da A. et al. // Adv. Mater. Interfaces. 2022. V. 9. P. 2200019. https://doi.org/10.1002/admi.202200019

16. Xu H., Shang H., Wang C., Du Y. // Adv. Funct. Mater. 2020. V. 30. P. 2000793. https://doi.org/10.1002/adfm.202000793

17. Maisch P., Tam K., Lucera L. et al. // Org. Electron. 2016. V. 38. P. 139. https://doi.org/10.1016/j.orgel.2016.08.006

18. Zhang L., Song V., Shi L. et al. // J. Nanostruct. Chem. 2021. V. 11. P. 323. https://doi.org/10.1007/s40097-021-00436-3

19. Lee J., Lee P., Lee H. et al. // Nanoscale. 2012. V. 4. P. 6408. https://doi.org/10.1039/c2nr31254a

20. Lee P., Lee J., Lee H. et al. // Adv. Mater. 2012. V. 24. P. 3326. https://doi.org/10.1002/adma.201200359

21. Mitrofanov A.V., Apel P.Y., Blonskaya I.V. et al. // Tech. Phys. 2006. V. 51. P. 1229. https://doi.org/10.1134/S1063784206090209

22. Doludenko I.M., Volchkov I.S., Turenko B.A. et al. // Mater. Chem. Phys. 2022. V. 287. P. 126285. https://doi.org/10.1016/j.matchemphys.2022.126285

23. Буркат Г.К. Электроосаждение драгоценных металлов. СПб.: Политехника, 2009. 21 с.

24. Natter H., Hempelmann R. // J. Phys. Chem. 1996. V. 100. P. 19525. https://doi.org/10.1021/jp9617837

25. Глинка Н.Л. Общая химия. М.: Интеграл-пресс, 2003. 727 c.

26. Smits F.M. // Bell Syst. Tech. J. 1958. V. 37. P. 711.

27. Акименко С.Н., Мамонова Т.И., Орелович О.Л. и др. // ВИНИТИ. Сер. Критические технологии. Мембраны. 2002. Т. 15. С. 21.

28. Doludenko I.M. // Inorg. Mater.: Appl. Res. 2022. V. 13. P. 531. https://doi.org/10.1134/S2075113322020125

29. Wakamoto K., Mochizuki Y., Otsuka V. et al. // Materials. 2020. V. 13. P. 4061. https://doi.org/10.3390/ma13184061

Comments

No posts found

Write a review
Translate