RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

ZnO microtubes: formation mechanism and whispering-gallery mode lasing

PII
S0023476125010058-1
DOI
10.31857/S0023476125010058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
35-41
Abstract
The luminescent and laser properties of ZnO microtubes synthesized by a modified thermal evaporation method were studied using photoluminescence spectroscopy. It was shown that whispering gallery modes are responsible for lasing in the near UV range. The possibility of achieving low lasing thresholds (down to ~ 8 kW/cm2) and high optical quality factors (over 3900) was demonstrated. A mechanism for the formation of such microcrystals was proposed, based on the assumption of simultaneous growth and etching along the [0001] crystallographic direction.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
68

References

  1. 1. Morkoc H., Ozgur U. Zinc oxide: fundamentals, materials and device technology. Weinheim: Wiley-VCH, 2009.
  2. 2. Sharma D.K., Shukla S., Sharma K.K., Kumar V. // Mater. Today. 2022. V. 49. P. 3028. https://doi.org/10.1016/j.matpr.2020.10.238
  3. 3. Klingshirn C.F. Semiconductor Optics. Berlin: Springer, 2012.
  4. 4. Srivastava V., Gusain D., Sharma Y.C. // Ceram. Int. 2013. V. 39. P. 9803. https://doi.org/10.1016/j.ceramint.2013.04.110
  5. 5. Oprea O., Andronescu E., Ficai D. et al. // Curr. Org. Chem. 2014. V. 18. P. 192.
  6. 6. Uikey P., Vishwakarma K. // Int. J. Emerg. Tech. Comp. Sci. Electron. 2016. V. 21. P. 239.
  7. 7. Di Mauro A., Fragalà M.E., Privitera V., Impellizzeri G. // Mater. Sci. Semicond. Process. 2017. V. 69. P. 44. https://doi.org/10.1016/j.mssp.2017.03.029
  8. 8. Тарасов А.П., Веневцев И.Д., Муслимов А.Э. и др. // Квантовая электроника. 2021. Т. 51. С. 366.
  9. 9. Znaidi L., Illia G.S, Benyahia S. et al. // Thin Solid Films. 2003. V. 428. P. 257. https://doi.org/10.1016/S0040-6090 (02)01219-1
  10. 10. Dong H., Zhou B., Li J. et al. // J. Materiomics. 2017. V. 3. P. 255. https://doi.org/10.1016/j.jmat.2017.06.001
  11. 11. Tashiro A., Adachi Y., Uchino T. // J. Appl. Phys. 2023. V. 133. P. 221101. https://doi.org/10.1063/5.0142719
  12. 12. Xu C., Dai J., Zhu G. et al. // Las. Photon. Rev. 2014. V. 8. P. 469. https://doi.org/10.1002/lpor.20130012
  13. 13. Yang Y.D., Tang M., Wang F.L. et al. // Photonics Res. 2019. V. 7. P. 594. https://doi.org/10.1364/PRJ.7.000594
  14. 14. Chen R., Ling B., Sun X.W., Sun H.D. // Adv. Mater. 2011. V. 23. P. 2199. https://doi.org/10.1002/adma.201100423
  15. 15. Michalsky T., Wille M., Dietrich C.P. et al. // Appl. Phys. Lett. 2014. V. 105. P. 211106. https://doi.org/10.1063/1.4902898
  16. 16. Qin F., Xu C., Lei D.Y. et al. // ACS Photonics. 2018. V. 5. P. 2313. https://doi.org/10.1021/acsphotonics.8b00128
  17. 17. Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Photonics. 2022. V. 9. P. 871. https://doi.org/10.3390/photonics9110871
  18. 18. Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
  19. 19. Тарасов А.П., Лавриков А.С., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2022. Т. 115. С. 554. https://doi.org/10.31857/S1234567822090026
  20. 20. Tarasov A.P., Zadorozhnaya L.A., Kanevsky V.M. // J. Appl. Phys. 2024. V. 136. P. 073102. https://doi.org/10.1063/5.0214420
  21. 21. Li L.E., Demianets L.N. // Opt. Mater. 2008. V. 30. P. 1074. https://doi.org/10.1016/j.optmat.2007.05.013
  22. 22. Демьянец Л.Н., Ли Л.Е., Лавриков А.С., Никитин С.В. // Кристаллография. 2010. Т. 55. С. 149.
  23. 23. Zadorozhnaya L.A., Tarasov A.P., Lavrikov A.S., Kanevsky V.M. // Comp. Opt. 2024. V. 48. P. 696. https://doi.org/10.18287/2412-6179-CO-1414
  24. 24. Dong H., Sun L., Xie W. et al. // J. Phys. Chem. C. 2010. V. 114. P. 17369. https://doi.org/10.1021/jp1047908
  25. 25. Тарасов А.П., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2024. Т. 119. С. 875. https://dx.doi.org/10.31857/S1234567824120024
  26. 26. Wagner R.S. // J. Crystal Growth. 1968. V. 3/4. P. 159.
  27. 27. Kaldis E. // Crystal Growth and Characterization. Amsterdam: North Holland, 1975.
  28. 28. Sharma R.B. // J. Appl. Phys. 1970. V. 41. P. 1866. https://doi.org/10.1063/1.1659122
  29. 29. Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Materials. 2022. V. 15. P. 8723. https://doi.org/10.3390/ma15248723
  30. 30. Tarasov A.P., Ismailov A.M., Gadzhiev M.K. et al. // Photonics. 2023. V. 10. P. 1354. https://doi.org/10.3390/photonics10121354
  31. 31. Ozgur U., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 41301. https://doi.org/10.1063/1.1992666
  32. 32. Ghosh M., Ningthoujam R.S., Vatsa R.K. et al. // J. Appl. Phys. 2011. V. 110. P. 054309. https://doi.org/10.1063/1.3632059
  33. 33. Zhang Z., Yates Jr. J.T. // Chem. Rev. 2012. V. 112. P. 5520. https://doi.org/10.1021/cr3000626
  34. 34. Guo B., Qiu Z.R., Wong K.S. // Appl. Phys. Lett. 2003. V. 82. P. 2290. https://doi.org/10.1063/1.1566482
  35. 35. Dai J., Xu C.X., Wu P. et al. // Appl. Phys. Lett. 2010. V. 97. P. 011101. https://doi.org/10.1063/1.3460281
  36. 36. Тарасов А.П., Брискина Ч.М., Маркушев В.М. и др. // Письма в ЖЭТФ. 2019. Т. 110. С. 750. https://doi.org/10.1134/S0370274X19230073
  37. 37. Zimmler M.A., Bao J., Capasso F. et al. // Appl. Phys. Lett. 2008. V. 93. P. 051101. https://doi.org/10.1063/1.2965797
  38. 38. Czekalla C., Sturm C., Schmidt-Grund R. et al. // Appl. Phys. Lett. 2008. V. 92. P. 241102. https://doi.org/10.1063/1.2946660
  39. 39. Wiersig J. // Phys. Rev. A. 2003. V. 67. P. 023807. https://doi.org/10.1103/PhysRevA.67.023807
  40. 40. Liu J., Lee S., Ahn Y. et al. // Appl. Phys. Lett. 2008. V. 92. P. 263102. https://doi.org/10.1063/1.2952763
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library