Accounting for the imperfection of the spectrophotometric complex optical elements when measuring transmission spectra of gyrotropic uniaxial crystals. II. Samples are cut parallel to the optical axis
Table of contents
Share
QR
Metrics
Accounting for the imperfection of the spectrophotometric complex optical elements when measuring transmission spectra of gyrotropic uniaxial crystals. II. Samples are cut parallel to the optical axis
Annotation
PII
S0023476125010076-1
Publication type
Article
Status
Published
Authors
A. F. Konstantinova 
Affiliation: National University of Science and Technology MISIS
Pages
53-61
Abstract
A theoretical and experimental study of the effect of imperfections of the polarizer, analyzer and photomultiplier tube (PMT) on the measurement results of the transmission coefficient spectra of the langasite family crystals cut parallel to the optical axis has been carried out. It is shown that in the absence of an analyzer, oscillations appear on the transmission spectra, the amplitude of which depends on the rotation of the crystal. These oscillations are associated with linear birefringence and appear due to the imperfection of the PMT, which plays the role of a partial analyzer. From the obtained spectra, the parameters of the PMT are calculated depending on the wavelength. The calculation of the birefringence of the studied crystals was carried out and an estimate of the error of such calculation was obtained. It is shown that the imperfection of optical elements does not lead to additional errors in the calculation of birefringence. Thus, when the plate is cut perpendicular to the optical axis, circular birefringence is manifested, when parallel, there is linear birefringence.
Received
03.04.2025
Number of purchasers
0
Views
20
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Головина Т.Г., Константинова А.Ф., Забелина Е.В. и др. // Кристаллография. 2025. Т. 70. № 1. С. 42. http://doi.org/10.31857/S0023476125010061

2. Меланхолин Н.М. Методы исследования оптических свойств кристаллов. М.: Наука, 1970. 156 с.

3. Kobayashi J., Uesu Y. // J. Appl. Cryst. 1983. V. 16. P. 204. https://doi.org/10.1107/S0021889883010262

4. Kobayashi J., Asahi T., Sakurai M. et al. // Acta Cryst. A. 1998. V. 54. P. 581. https://doi.org/10.1107/S0108767398001986

5. Шерклифф У. Поляризованный свет. М.: Мир, 1965. 264 с.

6. Шамбуров В.А., Евдищенко Е.А., Вислобоков А.И. // Кристаллография. 1988. Т. 33. Вып. 3. С. 554.

7. Shindo Y., Nakagawa M. // Rev. Sci. Instrum. 1985. V. 56. № 1. P. 32. https://doi.org/10.1063/1.1138467 https://www.campilab.by/file/35_5991-2529ru.pdf/5991-2529RU.pdf https://www.buffalo.edu/shared-facilities-equip/facilities-equipment/MaterialsCharacterizationLabs.host.html/content/shared/www/shared-facilities-equip/equipment-list/agilent-cary-7000.detail.html

8. Kozlova N., Buzanov O., Kozlova A. et al. // Radiat. Applic. 2016. V. 1. № 3. P. 171. https://doi.org/10.21175/RadJ.2016.03.032

9. Забелина Е.В., Козлова Н.С., Бузанов О.А. // Оптика и спектроскопия. 2023. Т. 131. Вып. 5. С. 634. https://doi.org/10.21883/OS.2023.05.55715.67-22

10. Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.

11. Шубников А.В. Кварц и его применение. М.; Л.: Изд-во АН СССР, 1940. 194 с.

12. Ghosh G. // Opt. Commun. 1999. V. 163. P. 95. https://doi.org/10.1016/S0030-4018 (99)00091-7

Comments

No posts found

Write a review
Translate