Atomistic simulation of paratellurite α-TeO<sub>2</sub> crystal. III. Anisotropy of ion transport under externally applied electric fields
Table of contents
Share
QR
Metrics
Atomistic simulation of paratellurite α-TeO<sub>2</sub> crystal. III. Anisotropy of ion transport under externally applied electric fields
Annotation
PII
S0023476125010093-1
Publication type
Article
Status
Published
Authors
А. K. Ivanov-Schitz 
Affiliation: Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Pages
68-72
Abstract
The features of ion transfer in α-TeO2 paratellurite crystals under conditions of an external constant electric field have been studied by the method of molecular dynamics. It is shown that the anisotropy of ion transport is more pronounced when the E field is applied along the c axis: at E = 350 kV/mm, diffusion increases by about 2 times for crystals with oxygen vacancies and 3 times for samples with additional interstitial oxygen atoms.
Received
03.04.2025
Number of purchasers
0
Views
10
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Кондратюк И.П., Мурадян Л.А., Писаревский Ю.В., Симонов В.И. // Кристаллография. 1987. Т. 32. Вып. 3. С. 609.

2. Thomas P.A. // J. Phys. C. 1988. V. 21. P. 4611. http://stacks.iop.org/0022-3719/21/i=25/a=009

3. Arlt G., Schweppe H. // Solid State Commun. 1968. V. 6. P. 783. https://doi.org/10.1016/0038–1098 (68)90119-1

4. Uchida N. // Phys. Rev. B. 1971. V. 4. P. 3736.

5. Беляев Л.М., Бурков В.И., Гильварг А.Б. и др. // Кристаллография. 1975. Т. 20. Вып. 6. С. 1221.

6. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.

7. Акустические кристаллы. Справочник. Под. ред. Шаскольской М.П. М.: Наука, 1982. 632 с.

8. Wang P., Zhang Z. // Appl. Opt. 2017. V. 56. P. 1647. https://doi.org/10.1364/AO.56.001647

9. Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 950. https://doi.org/10.7868/S0023476114060149

10. Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // Письма в ЖЭТФ. 2018. Т. 107. С. 679. https://doi.org/10.7868/S0370274X18100119

11. Kulikov A.G., Blagov A.E., Ilin A.S. et al. // J. Appl. Phys. 2020. V. 127. P. 065106. https://doi.org/10.1063/1.5131369

12. Иванов-Шиц А.К. // Кристаллография. 2024. Т. 69. № 6. С. 1009. https://doi.org/10.31857/S0023476124060116

13. Иванов-Шиц А.К. // Кристаллография. 2025. Т. 70. № 1. С. 62. https://doi.org/10.31857/S0023476125010089

14. Smith W., Todorov I.T., Leslie M. // Z. Kristallogr. 2005. B. 220. S. 563. https://doi.org/10.1524/zkri.220.5.563.65076

15. English N.J., Waldron C.J. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 12407. https://doi.org/10.1039/c5cp00629e

16. English N.J. // Crystals. 2021. V. 11. P. 1405. https://doi.org/10.3390/cryst11111405

17. Jain H., Nowick A. S. // Phys. Status Solidi. A. 1981. V. 67. P. 701. https://doi.org/10.1002/pssa.2210670242

18. Wegener J., Kanert O., Küchler R. et al. // Z. Naturforsch. A. 1994. V. 49. P. 1151. https://doi.org/10.1515/zna-1994-1208

19. Wegener J., Kanert O., Küchler R. et al. // Radiat. Eff. Defects Solids. 1995. V. 114. P. 277.

20. Hartmann E., Kovács L. // Phys. Status Solidi. A. 1982. V. 74. P. 59. https://doi.org/10.1002/pssa.2210740105

Comments

No posts found

Write a review
Translate