Electrically conductive nonwoven materials produced by electrospinning of polyaniline and bulk polymers
Table of contents
Share
QR
Metrics
Electrically conductive nonwoven materials produced by electrospinning of polyaniline and bulk polymers
Annotation
PII
S0023476125010144-1
Publication type
Article
Status
Published
Authors
Sergey N. Malakhov 
Affiliation: National Research Center “Kurchatov Institute”
Pages
104-110
Abstract
Electrically conductive micro- and nanofibrous nonwoven materials were obtained by electrospinning of solutions of polyaniline and a number commodity polymers (polyamide-6, polylactic acid, polystyrene, polyethylene oxide). The average fiber diameter is in the range of 0.5–6 μm, while the addition of polyaniline into the spinning solution leads to a decrease in fiber diameter. The composition of the obtained materials was confirmed by IR spectroscopy. It was found that during the electrospinning process the supramolecular structure of polyamide-6 and polylactide changes (from α-phase to γ- and amorphous phases, respectively), and polyaniline does not form crystalline structures. The specific electrical conductivity of the obtained nonwoven fabrics can reach 10−3 S/cm, which allows their application both in tissue engineering and in organic electronics.
Received
04.04.2025
Number of purchasers
0
Views
18
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Kenry, Lim C.T. // Prog. Polym. Sci. 2017. V. 70. P. 1. https://doi.org/10.1016/j.progpolymsci.2017.03.002

2. Wang X.X., Yu G.F., Zhang J. et al. // Prog. Mater. Sci. 2021. V. 115. P. 100704. https://doi.org/10.1016/j.pmatsci.2020.100704

3. Hwang J., Muth J., Ghosh T. // J. Appl. Polym. Sci. 2007. V. 104. P. 2410. https://doi.org/10.1002/app.25914

4. Victor F.S., Kugarajah V., Bangaru M., Dharmalingam S. // J. Electrostat. 2022. V. 119. P. 103738. https://doi.org/10.1016/j.elstat.2022.103738

5. Mazinani S., Ajji A., Dubois C. // J. Polym. Sci. B. Polym. Phys. 2010. V. 48. P. 2052. https://doi.org/10.1002/polb.22085

6. Yang T., Wu D., Lu L. et al. // Polym. Compos. 2011. V. 32. P. 1280. https://doi.org/10.1002/pc.21149

7. Naeem F., Prestayko R., Saem S. et al. // Nanotechnology. 2015. V. 26. P. 395301. https://doi.org/10.1088/0957-4484/26/39/395301

8. Bao Q., Zhang H., Yang J.X. et al. // Adv. Funct. Mater. 2010. V. 20. P. 782. https://doi.org/10.1002/adfm.200901658

9. Azarniya A., Eslahi N., Mahmoudi N., Simchi A. // Compos. A. Appl. Sci. Manuf. 2016. V. 85. P. 113. https://doi.org/10.1016/j.compositesa.2016.03.011

10. Li Y., Zhang P., Ouyang Z. et al. // Adv. Funct. Mater. 2016. V. 26. P. 2122. https://doi.org/10.1002/adfm.201504533

11. Liu Y., Teng H., Hou H., You T. // Biosens. Bioelectron. 2009. V. 24. P. 3329. https://doi.org/10.1016/j.bios.2009.04.032

12. Zhu H., Du M., Zhang M. et al. // Sensor. Actuat. B. Chem. 2013. V. 185. P. 608. https://doi.org/10.1016/j.snb.2013.05.062

13. Alegre C., Busacca C., Di Blasi A. et al. // J. Energy Storage. 2019. V. 23. P. 269. https://doi.org/10.1016/j.est.2019.04.001

14. Jur J.S., Sweet III W.J., Oldham C.J., Parsons G.N. // Adv. Funct. Mater. 2011. V. 21. P. 1993. https://doi.org/10.1002/adfm.201001756

15. Климова С.А., Аткин В.С., Усачев А.Н. и др. // Хим. волокна. 2017. № 3. С. 66.

16. Das T.K., Prusty S. // Polym.-Plast. Technol. 2012. V. 51. P. 1487. https://doi.org/10.1080/03602559.2012.710697

17. Namsheer K., Rout C.S. // RSC Adv. 2021. V. 11. P. 5659. https://doi.org/10.1039/D0RA07800J

18. Majeed A.H., Mohammed L.A., Hammoodi O.G. et al. // Int. J. Polym. Sci. 2022. V. 2022. P. 9047554. https://doi.org/10.1155/2022/9047554

19. Zhang Y., Rutledge G.C. // Macromolecules. 2012. V. 45. P. 4238. https://doi.org/10.1021/ma3005982

20. Das S., Sharma M., Saharia D. et al. // Biomed. Mater. 2017. V. 12. P. 045025. https://doi.org/10.1088/1748-605X/aa7802

21. Farkhondehnia H., Amani Tehran M., Zamani F. // Fiber. Polym. 2018. V. 19. P. 1813. https://doi.org/10.1007/s12221-018-8265-1

22. Frontera P., Busacca C., Trocino S. et al. // J. Nanosci. Nanotechnol. 2013. V. 13. P. 4744. https://doi.org/10.1166/jnn.2013.7196

23. Li C., Chartuprayoon N., Bosze W. et al. // Electroanal. 2014. V. 26. P. 711. https://doi.org/10.1002/elan.201300641

24. Yao J., Chen Y., Li W. et al. // RSC Adv. 2019. V. 9. P. 5610. https://doi.org/10.1039/C8RA10495F

25. Liu Y., Cui L., Guan F. et al. // Macromolecules. 2007. V. 40. P. 6283. https://doi.org/10.1021/ma070039p

26. Малахов С.Н., Чвалун С.Н. // Российские нанотехнологии. 2020. Т. 15. № 4. С. 477. https://doi.org/10.1134/S1992722320040093

27. Hsieh Y.T., Nozaki S., Kido M. et al. // Polym. J. 2020. V. 52. P. 755. https://doi.org/10.1038/s41428-020-0343-8

28. Малахов С.Н., Малышкина А.М., Чвалун С.Н. // Журн. прикл. химии. 2022. Т. 95. № 9. С. 1179. https://doi.org/10.31857/S0044461822090109

29. Deitzel J.M., Kleinmeyer J.D., Hirvonen J.K., Tan N.B. // Polymer. 2001. V. 42. P. 8163. https://doi.org/10.1016/S0032-3861 (01)00336-6

30. Малахова Ю.Н., Малахов С.Н., Камышинский Р.А. и др. // Журн. прикл. химии. 2017. Т. 90. № 9. С. 1252.

31. Chae D.W., Kim B.C. // Polym. Adv. Technol. 2005. V. 16. P. 846. https://doi.org/10.1002/pat.673

32. Малахов С.Н., Кузнецов Н.М., Вдовиченко А.Ю. и др. // Хим. волокна. 2023. № 6. С. 56.

33. Al-Gharram M., Jum'h I., Telfah A., Al-Hussein M. // Colloid. Surf. A. 2021. V. 628. P. 127342. https://doi.org/10.1016/j.colsurfa.2021.127342

34. Śniechowski M., Borek R., Piwowarczyk K., Łużny W. // Macromol. Theor. Simul. 2015. V. 24. P. 284. https://doi.org/10.1002/mats.201400105

35. Garrudo F.F.F., Ferreira L.V., Ferraria A.M. et al. // Synthetic Met. 2024. V. 301. P. 117523. https://doi.org/10.1016/j.synthmet.2023.117523

36. Olvera-Gracia M., Aguilar-Hernandez J.R. // J. Appl. Res. Technol. 2014. V. 12 P. 598. https://doi.org/10.1016/S1665-6423 (14)71638-4

37. Picciani P.H., Medeiros E.S., Pan Z. et al. // J. Appl. Polym. Sci. 2009. V. 112. № 2. P. 744. https://doi.org/10.1002/app.29447

38. Ucar N., Kizildag N., Onen A. et al. // Fiber. Polym. 2015. V. 16. P. 2223. https://doi.org/10.1007/s12221-015-5426-3

39. Костина Ю.В., Бондаренко Г.Н., Алентьев А.Ю., Ямпольский Ю.П. // Высокомол. соед. Сер. А. 2006. Т. 48. № 1. С. 41.

40. Moseti K.O., Yoshioka T., Kameda T., Nakazawa Y. // Molecules. 2019. V. 24. P. 3945. https://doi.org/10.3390/molecules24213945

Comments

No posts found

Write a review
Translate