Crystal chemistry of silver borates with salt-inclusion structures
Table of contents
Share
QR
Metrics
Crystal chemistry of silver borates with salt-inclusion structures
Annotation
PII
S0023476125020055-1
Publication type
Article
Status
Published
Authors
S. N. Volkov 
Occupation: Grebenshchikov Institute of Silicate Chemistry
Affiliation: National Research Centre “Kurchatov Institute” – Petersburg Nuclear Physics Institute (PNPI)
Pages
281-295
Abstract
A review of structural studies of silver borates with salt-inclusion structures is presented. Data on the first halogen-containing silver borates are provided, along with the structural and physicochemical characterization of the Ag4B4O7X2 (X = Br, I), Ag3B6O10X (X = Br, I, NO3), Ag4B7O12X (X = Cl, Br, I) families, as well as Ag4(B3O6)(NO3) and Ag3B4O6(OH)2(NO3). The crystal structures of these compounds are framework-type, layered, or composed of isolated boron-oxygen groups. In almost all cases, silver atoms exhibit pronounced anharmonicity in thermal displacements, which was investigated using X-ray structural analysis, including extensive temperature-dependent studies. The reasons for the low stability of chlorine-containing silver borates are discussed, along with the relationship between the anharmonicity of thermal displacements and other properties, such as the high ionic conductivity of Ag3B6O10I.
Received
26.04.2025
Number of purchasers
0
Views
8
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Bubnova R.S., Filatov S.K. // Z. Kristallogr. Cryst. Mater. 2013. V. 228 P. 395. https://doi.org/10.1524/zkri.2013.1646

2. Bubnova R., Volkov S., Albert B. et al. // Crystals (Basel). 2017. V. 7. P. 93. https://doi.org/10.3390/cryst7030093

3. Topnikova A.P., Belokoneva E.L. // Russ. Chem. Rev. 2019. V. 88. P. 204. https://doi.org/10.1070/RCR4835

4. Leonyuk N.I., Maltsev V.V., Volkova E.A. // Molecules. 2020. V. 25. P. 2450. https://doi.org/10.3390/molecules25102450

5. Mutailipu M., Poeppelmeier K.R., Pan S. // Chem. Rev. 2021. V. 121. P. 1130. https://doi.org/10.1021/acs.chemrev.0c00796

6. Huang C., Mutailipu M., Zhang F. et al. // Nat. Commun. 2021. V. 12. P. 2597. https://doi.org/10.1038/s41467-021-22835-4

7. Пятницкий И.В., Сухан В.В. Аналитическая химия серебра. М.: Наука, 1975. 264 с.

8. Shannon R.D. // Acta Cryst. А. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551

9. Hyman A., Perloff A., Mauer F. et al. // Acta Cryst. 1967. V. 22. P. 815. https://doi.org/10.1107/S0365110X6700163X

10. Krogh-Moe J. // Acta Cryst. 1965. V. 18. P. 77. https://doi.org/10.1107/S0365110X65000142

11. Volkov S.N., Charkin D.O., Arsentev M.Yu. et al. // CrystEngComm. 2022. V. 24. P. 4174. https://doi.org/10.1039/D2CE00307D

12. Volkov S.N., Charkin D.O., Kireev V.E. et al. // Solid State Sci. 2023. V. 145. P. 107311. https://doi.org/10.1016/j.solidstatesciences

13. Chen Z., Pan S., Dong X. et al. // Inorg. Chim. Acta. 2023. V. 406. P. 205. https://doi.org/10.1016/j.ica.2013.04.046

14. Yakubovich O.V., Perevoznikova I.V., Dimitrova O.V. et al. // Doklady Physics. 2002. V. 47. P. 791. https://doi.org/10.1134/1.1526424

15. Corazza E., Menchetti S., Sabelli C. // Am. Mineral. 1974. V. 59. P. 1005.

16. Volkov S., Aksenov S., Charkin D. et al. // Solid State Sci. 2024. V. 148. P. 107414. http://dx.doi.org/10.1016/j.solidstatesciences.2023.107414

17. Touboul M., Penin N., Nowogrocki G. // Solid State Sci. 2004. V. 5. P. 1327. https://doi.org/10.1016/S1293-2558 (03)00173-0

18. Sennova N.A., Bubnova R.S., Filatov S.K. et al. // Glass Phys. Chem. 2007. V. 33. P. 217. https://doi.org/10.1134/S1087659607030054

19. Dong X., Wu H., Shi Y. et al. // Chem. A. Eur. J. 2013. V. 19. P. 7338. https://doi.org/10.1002/chem.201300902

20. Bürgi H.B., Capelli S.C., Birkedal H. // Acta Cryst. А. 2000. V. 56. P. 425. https://doi.org/10.1107/S0108767300008734

21. Schulz H. // The Physics of Superionic Conductors and Electrode Materials. Boston: Springer, 1983. P. 5. https://doi.org/10.1007/978-1-4684-4490-2_2

22. Perenthaler E., Schulz H., Beyeler H.U. // Solid State Ion. 1981. V. 5. P. 493. https://doi.org/10.1016/0167-2738 (81)90300-3

23. Boucher F., Evain M., Brec R. // J. Solid State Chem. 1993. V. 107. P. 332. https://doi.org/10.1006/jssc.1993.1356

24. Bindi L., Cooper M.A., McDonald A.M. // Can. Mineral. 2015. V. 53. P. 159. https://doi.org/10.3749/canmin.1500009

25. Kuhs W. // Aust. J. Phys. 1988. V. 41. P. 369. https://doi.org/10.1071/PH880369

26. Volkov S.N., Charkin D.O., Firsova V.A. et al. // Crystallogr. Rev. 2023. V. 29. P. 147. https://doi.org/10.1080/0889311X.2023.2266400

27. Kuhs W.F. // International Tables for Crystallography. Chester: International Union of Crystallography, 2006. P. 228. https://doi.org/10.1107/97809553602060000636

28. Trueblood K.N., Bürgi H.B., Burzlaff H. et al. // Acta Cryst. A. 1996. V. 52. P. 770. https://doi.org/10.1107/S0108767396005697

29. Morrison G., zur Loye H.-C. // Cryst. Growth Des. 2020. V. 20. P. 8071. https://doi.org/10.1021/acs.cgd.0c01317

30. West J.P., Hwu S.-J. // J. Solid State Chem. 2012. V. 195. P. 101. https://doi.org/10.1016/j.jssc.2012.06.015

31. Bai C., Han S., Pan S. et al. // RSC Adv. 2015. V. 5. P. 12416. https://doi.org/10.1039/C4RA16639F

32. Yan Y., Jiao J., Tu C. et al. // J. Mater. Chem. 2022. V. 10. P. 8584. https://doi.org/10.1039/D2TC01598F

33. Plachinda P.A., Dolgikh V.A., Stefanovich S.Yu. et al. // Solid State Sci. 2005. V. 7. P. 1194. https://doi.org/10.1016/j.solidstatesciences.2005.05.006

34. Yakubovich O.V., Mochenova N.N., Dimitrova O.V. et al. // Acta Cryst. E. 2004. V. 60. P. i127. https://doi.org/10.1107/S1600536804023232

35. Thornley F.R., Kennedy N.S.J., Nelmes R.J. // J. Phys. C. 1976. V. 9. P. 681. https://doi.org/10.1088/0022-3719/9/5/010

36. Chiodelli G., Flor G., Magistris A. et al. // J. Therm. Anal. 1983. V. 28. P. 273. https://doi.org/10.1007/BF01983260

37. Volkov S.N., Charkin D.O., Arsent’ev M.Yu. et al. // Inorg. Chem. 2020. V. 59. P. 2655. https://doi.org/10.1021/acs.inorgchem.0c00306

38. Volkov S.N., Charkin D.O., Firsova V.A. et al. // Inorg. Chem. 2023. V. 62. P. 30. https://doi.org/10.1021/acs.inorgchem.2c03680

39. Volkov S.N., Charkin D.O., Manelis L.S. et al. // Solid State Sci. 2022. V. 125. P. 106831. https://doi.org/10.1016/j.solidstatesciences.2022.106831

40. Копылова Ю.О., Волков С.Н., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. С. 132981. https://doi.org/10.26902/JSC_id132981

41. Volkov S.N., Charkin D.O., Marsiy I.A. et al. // J. Cryst. Growth. 2024. V. 644. P. 127837. https://doi.org/10.1016/j.jcrysgro.2024.127837

42. Wang R., Zhong Y., Dong X. et al. // Inorg. Chem. 2023. V. 62. P. 4716. https://doi.org/10.1021/acs.inorgchem.3c00233

43. Huai L., Liu W., Zhang B.-B. et al. // New J. Chem. 2024. V. 48. P. 13805. https://doi.org/10.1039/D4NJ01687D

44. Du Z.P., Zhou Y., Zhao S.G. // Chin. J. Appl. Chem. 2023. V. 40. P. 229. https://doi.org/10.19894/j.issn.1000-0518.220225

45. Якубович О.В., Перевозникова И.В., Димитрова О.В. и др. // Докл. РАН. 2002. Т. 387. С. 54. https://doi.org/10.1134/1.1526424

46. Chen Z., Pan S., Dong X. et al. // Inorg. Chim Acta. 2013. V. 406. P. 205. https://doi.org/10.1016/j.ica.2013.04.046

47. Bai C., Yu H., Han S. et al. // Inorg. Chem. 2014. V. 53. P. 11213. https://doi.org/10.1021/ic501814q

48. Wu H., Pan S., Poeppelmeier K.R. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 7786. https://doi.org/10.1021/ja111083x

49. Brachtel G., Jansen M. // Z. Anorg. Allg. Chem. 1981. V. 478. P. 13. https://doi.org/10.1002/zaac.19814780703

50. Jansen M., Brachte G. // Z. Anorg. Allg. Chem. 1982. V. 489. P. 42. https://doi.org/10.1002/zaac.19824890106

51. Jansen M., Scheld W. // Z. Anorg. Allg. Chem. 1981. V. 477. P. 85. https://doi.org/10.1002/zaac.19814770609

52. Petříček V., Dušek M., Plášil J. // Z. Kristallogr. Cryst. Mater. 2016. V. 231. P. 583. https://doi.org/10.1515/zkri-2016-1956

53. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737

54. Petříček V., Palatinus L., Plášil J. et al. // Z. Kristallogr. Cryst. Mater. 2023. V. 238. P. 271. https://doi.org/10.1515/zkri-2023-0005

55. Gagné O.C., Hawthorne F.C. // Acta Cryst. B. 2017. V. 73. P. 956. https://doi.org/10.1107/S2052520617010988

56. Hawthorne F.C. // Am. Mineral. 2015. V. 100. P. 696. https://doi.org/10.2138/am-2015-5114

57. Jansen M. // Angew. Chem. Int. Ed. 1987. V. 26. P. 1098. https://doi.org/10.1002/anie.198710981

58. Schmidbaur H., Schier A. // Angew. Chem. Int. Ed. 2015. V. 54. P. 746. https://doi.org/10.1002/anie.201405936

59. Filatov S.K., Bubnova R.S. // Phys. Chem. Glasses. 2000. V. 41. P. 216.

60. Woller K.-H., Heller G. // Z. Kristallogr. Cryst. Mater. 1981. V. 156. P. 151. https://doi.org/10.1524/zkri.1981.156.1-2.151

61. Giese R.F. // Science. 1966. V. 154. P. 1453. https://doi.org/10.1126/science.154.3755.1453

62. Kaußler C., Kieslich G. // J. Appl. Cryst. 2021. V. 54. P. 306. https://doi.org/10.1107/S1600576720016386

63. Hornfeck W. // Acta Cryst. 2020. V. 76. P. 534. https://doi.org/10.1107/S2053273320006634

64. Krivovichev S.V. // Acta Cryst. B. 2016. V. 72. P. 274. https://doi.org/10.1107/S205252061501906X

Comments

No posts found

Write a review
Translate