RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Minerals of the hydrotalcite group: crystal chemistry and a new perspective on 'old' minerals

PII
S0023476125020081-1
DOI
10.31857/S0023476125020081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 2
Pages
336-346
Abstract
The paper summarizes the data on the structures of hydrotalcite group minerals – layered double hydroxides with the general formula M2+ 6 M3+ 2 (OH)16Am2/m·4H2O (М2+ = Mg2+, Ni2+; М3+ = Al3+, Fe3+, Cr3+, Mn3+, Co3+; A = CO32–, Cl and OH). It is shown that all of them crystallize with the structure of 3R- and 2H-polytypes without the formation of superstructures. The a unit-cell parameter is in the range of 3.05–3.13 Å. The characteristic interlayer distances (d00n) for the members of the group with carbonate and chloride anions are ~7.80 and 8.04 Å, respectively (c = d00n × 2 for 2H and c = d00n × 3 for 3R). Three hydrotalcite group minerals should be reconsidered taking into account new crystallographic data and regularities: takovite and droninoite most likely correspond to minerals of the quintinite group with M2+ : M3+ = 2 : 1, rather than to minerals of the hydrotalcite group, and the data on reevesite indicate that this name could describe two minerals with M2+ : M3+ = 3 : 1 and 2 : 1.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
72

References

  1. 1. Hochstetter C. // J. Prakt. Chem. 1842. V. 27. P. 375.
  2. 2. Mills S.J., Christy A.G., Schmitt R. // Mineral. Mag. 2016. V. 80. P. 1023. https://doi.org/10.1180/minmag.2016.080.040
  3. 3. Igelström L.J. // Öfversigt af Kongl. vetenskaps-akademiens förhandlingar. 1866. V. 22 (9). P. 605.
  4. 4. Petterd W.F. // Catalog of the Minerals of Tasmania. 3rd Edition, J. Vail Hobart. 1910. P. 167.
  5. 5. Dunn P.J., Peacor D.R., Palmer T.D. // Am. Mineral. 1979. V. 64. P. 127.
  6. 6. Kasatkin A.V., Britvin S.N., Krzhizhanovskaya M.G. et al. // Mineral. Mag. 2022. V. 86. P. 841. https://doi.org/10.1180/mgm.2022.65
  7. 7. White J.S., Henderson E.P., Mason B. // Am. Mineral. 1967. V. 52. P. 1190.
  8. 8. de Waal S.A., Viljoen E.A. // Am. Mineral. 1971. V. 56. P. 1077.
  9. 9. Maksimović Z. // Zapisnici SGD. 1955. V. 1955. P. 219.
  10. 10. Kohls D.W., Rodda J.L. // Am. Mineral. 1967. V. 52. P. 1261.
  11. 11. Чуканов Н.В., Пеков И.В., Левицкая Л.А. и др. // Зап. Рос. минерал. о-ва. 2008. Т. 137 (6). С. 38.
  12. 12. Grguric B.A., Madsen I.C., Pring A. // Mineral. Mag. 2001. V. 65. P. 427. https://doi.org/10.1180/002646101300119501
  13. 13. Koritnig S., Süsse P. // Tscherm. Min. Petr. Mitt. 1975. V. 22. P. 79.
  14. 14. Mills S.J., Christy A.G., Génin J.-M.R. et al. // Mineral. Mag. 2012. V. 76. P. 1289. https://doi.org/10.1180/minmag.2012.076.5.10
  15. 15. Allmann R. // Acta Cryst. B. 1968. V. 24. P. 972.
  16. 16. Taylor H.F.W. // Mineral. Mag. 1973. V. 39. P. 377.
  17. 17. Rives V. Layered Double Hydroxides: Present and Future. N.Y.: Nova Publishers, 2001.
  18. 18. Duan X., Evans D.G. Layered Double Hydroxides. Structure and Bonding. V. 119. Springer Science and Business Media, 2006.
  19. 19. Singha R.A., Kesavan P.S., Ray S.S. // ACS Omega. 2022. V. 7. P. 20428. https://doi.org/10.1021/acsomega.2c01405
  20. 20. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172. https://doi.org/10.1016/j.clay.2017.12.021
  21. 21. Shao Z.B., Cui J., Lin X.B. et al. // Compos. A. Appl. Sci. 2022. V. 155. P. 106841. https://doi.org/10.1016/j.compositesa.2022.106841
  22. 22. Feng X., Long R., Wang L. et al. // Sep. Purif. Technol. 2022. V. 284. P. 120099. https://doi.org/10.1016/j.seppur.2021.120099
  23. 23. Johnston A.L., Lester E., Williams O. et al. // J. Environ. Chem. Eng. 2021. V. 9 (4). P. 105197. https://doi.org/10.1016/j.jece.2021.105197
  24. 24. Veerabhadrappa M.G., Maroto-Valer M.M., Chen Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13 (10). P. 11805. https://doi.org/10.1021/acsami.0c20457
  25. 25. Татаринов А.В., Сапожников А.Н., Прокудин С.Г. и др. // Зап. Рос. минерал. о-ва. 1985. Т. 114. С. 575.
  26. 26. Melchiorre E.B., Bottrill R., Huss G.R. et al. // Geochim. Cosmochim. Acta. 2017. V. 197. P. 43. https://doi.org/10.1016/j.gca.2016.10.020
  27. 27. Stanimirova T. // Ann. Univ. Sofia. 2001. V. 94 (1). P. 73.
  28. 28. Raade G. // Norsk Bergverksmuseum Skrift. 2013. V. 50. P. 55.
  29. 29. Житова Е.С., Иванюк Г.Ю., Кривовичев С.В. и др. // Зап. Рос. минерал. о-ва. 2016. Т. 145 (3). С. 81.
  30. 30. Zhitova E.S., Sheveleva R.M., Zolotarev A.A. et al. // Crystals. 2023. V. 13 (5). 839. https://doi.org/10.3390/cryst13050839
  31. 31. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Mineral. Mag. 2019. V. 83. P. 269. https://doi.org/10.1180/mgm.2018.145
  32. 32. Aminoff G., Broomé B. // Kungliga Svenska Vetenskapsakademiens Handlingar. 1932. V. 9. P. 23.
  33. 33. Ingram L., Taylor H.F.W. // Mineral. Mag. 1967. V. 36 (280). P. 465.
  34. 34. Mills S.J., Whitfield P.S., Wilson S.A. et al. // Am. Mineral. 2011. V. 96. P. 179. https://doi.org/10.2138/am.2011.3531
  35. 35. Житова Е.С., Пеков И.В., Чуканов Н.В. и др. // Геол. геофиз. 2020. Т. 61 (1). С. 47.
  36. 36. Matsubara S., Kato A., Nagashima K. // Bull. Natl. Sci. Mus. 1984. V. 10. P. 81.
  37. 37. Zhitova E.S., Sheveleva R.M., Kasatkin A.V. et al. // Symmetry. 2023. V. 15. 1029. https://doi.org/10.3390/sym15051029
  38. 38. Song Y., Moon H.S. // Clay Mineral. 1998. V. 33 (2). P. 285. https://doi.org/10.1180/000985598545480
  39. 39. Bish D.L., Brindley G.W. // Am. Mineral. 1977. V. 62. P. 458.
  40. 40. Mills S.J., Whitfield P.S., Kampf A.R. et al. // J. Geosci. 2012. V. 58. P. 273. http://doi.org/10.3190/jgeosci.127
  41. 41. Allmann R., Donnay J.D.H. // Am. Mineral. 1969. V. 54 (1–2). P. 296.
  42. 42. Braithwaite R.S.W., Dunn P.J., Pritchard R.G. et al. // Mineral. Mag. 1994. V. 58 (390). P. 79. https://doi.org/10.1180/minmag.1994.058.390.08
  43. 43. Zhitova E.S., Chukanov N.V., Pekov I.V. et al. // Appl. Clay Sci. 2023. V. 243. 107070. https://doi.org/10.1016/j.clay.2023.107070
  44. 44. Chukanov N.V., Pekov I.V., Levitskaya L.A. et al. // Geol. Ore Depos. 2009. V. 51. P. 767. https://doi.org/10.1134/S1075701509080091
  45. 45. Allmann R., Jespen H.P. // N. Jb. Miner. Mh. 1969. V. 1969. P. 544.
  46. 46. Bellotto M., Rebours B., Clause O. et al. // J. Phys. Chem. 1996. V. 100. P. 8527. https://doi.org/10.1021/jp960039j
  47. 47. Hansen H.C.B., Taylor R.M. // Clay Mineral. 1991. V. 26 (4). P. 507. https://doi.org/10.1180/claymin.1991.026.4.06
  48. 48. Monnin C., Chavagnac V., Boulart C. et al. // Biogeosciences. 2014. V. 11 (20). P. 5687. https://doi.org/10.5194/bg-11-5687-2014
  49. 49. Hofmeister W., Von Platen H. // Crystallogr. Rev. 1992. V. 3. P. 3. https://doi.org/10.1080/08893119208032964
  50. 50. Frondel C. // Am. Mineral. 1941. V. 26 (5). P. 295.
  51. 51. Житова Е.С., Михайленко Д.С., Пеков И.В. и др. // Докл. РАН. Науки о Земле. 2024. Т. 515. № 7. С. 114.
  52. 52. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Appl. Clay Sci. 2016. V. 130. P. 2. https://doi.org/10.1016/j.clay.2016.01.031
  53. 53. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Minerals. 2019. V. 9 (4). 221. https://doi.org/10.3390/min9040221
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library