RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

KINETICS OF DISCRETE KINKS AND DOMAIN WALLS

PII
S0023476125040063-1
DOI
10.31857/S0023476125040063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
583-589
Abstract
The kinetics of kinks and domain walls in quasi-one-dimensional systems is described within the framework of a model intermediate between the sharp kink model and the continuum model of an elastic string. The effects resulting from the discrete structure of crystalline materials are considered, including the periodic inhomogeneity of the energy relief for kink migration. Within the framework of a transparent approximation using a minimum number of internal variables, the dependence of the Peierls barriers on the driving force is calculated and the transition between static and dynamic regimes is described. The theory is based on the universal Frenkel-Kontorova model and can be applied to extended systems of various natures.
Keywords
Date of publication
07.04.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. One-Dimensional Nanostructures / Ed. Wang Z.M. N.Y.: Springer, Science+Business Media, 2008. 329 p.
  2. 2. Давыдов А.С. // Успехи физ. наук. 1982. Т. 138. С. 603.
  3. 3. Remoissenet M. Waves Called Solitons. Concepts and Experiments. Berlin: Springer, 1994. 335 p.
  4. 4. Nonlinear Science at the Dawn of the 21st Century / Eds. Christiansen P.L. et al. Springer Science and Business Media, 2000. V. 542. 457 p.
  5. 5. Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат, 1972. 598 с.
  6. 6. Messerschmidt U. Dislocation dynamics during plastic deformation / Ed. Hull R. Berlin; Heidelberg: Springer Science and Business Media, 2010. 503 p.
  7. 7. Indenbom V.L., Petukhov B.V., Lothe J. // Modern Problems in Condensed Matter Sciences. Elsevier, 1992. V. 31. P. 489.
  8. 8. Петухов Б.В. Динамика дислокаций в кристаллическом рельефе. Дислокационные кинки и пластичность кристаллических материалов. Saarbrucken: Lambert Academic Publishing, 2016. 385 с. EDN UVWRYG
  9. 9. Додд Р., Эйлбек Дж., Гиббон Дж., Моррис. Солитоны и нелинейные волновые уравнения. М.: Мир, 1988. 694 с.
  10. 10. Kivshar Y.S., Malomed B.A. // Rev. Mod. Phys. 1989. V. 61. P. 763. https://doi.org/10.1103/RevModPhys.61.763
  11. 11. Bishop A.R., Krumhansl J.A., Trullinger S.E. // Physica D: Nonlinear Phenomena. 1980. V. 1. P. 1. https://doi.org/10.1016/0167-2789 (80)90003-2
  12. 12. Scott A. Nonlinear science: emergence and dynamics of coherent structures. Oxford: Oxford University Press, 2003. 504 p.
  13. 13. Vachaspati T. Kinks and Domain Walls. An Introduction to Classical and Quantum Solitons. Cambridge University Press. Cambridge, N.Y. Melbourne, Madrid, Cape Town, Singapore, S˜ao Paulo. 2006. 176 p.
  14. 14. Cuevas-Maraver J., Kevrekidis P.G., Williams F. The sine-Gordon model and its applications. From Pendula and Josephson Junctions to Gravity and High-Energy Physics. Nonlinear Systems and Complexity. Switzerland: Springer, 2014. 263 p. https://doi.org/10.1007/978-3-319-06722-3
  15. 15. Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов: Метод обратной задачи. М.: Наука, 1980. 319 с.
  16. 16. Clerc M.G., Elías R.G., Rojas R.G. // Philos. Trans. Roy. Soc. A. 2011. V. 369. P. 1. https://doi.org/10.1098/rsta.2010.0255
  17. 17. Ablowitz M.J., Musslimani Z.H., Biondini G. // Phys. Rev. E. 2002. V. 65. 026602. https://doi.org/10.1103/PhysRevE.65.026602
  18. 18. Hennig D., Tsironis G.P. // Phys. Rep. 1999. V. 307. № 5-6. P. 333. https://doi.org/10.1016/S0370-1573 (98)00025-8
  19. 19. Peyrard M., Kruscal M.D. // Physica D: Nonlinear Phenomena. 1984. V. 14. P. 88. https://doi.org/10.1016/0167-2789 (84)90006-X
  20. 20. Schaumburg H. // Philos. Mag. 1972. V. 25. P. 1429.
  21. 21. Никитенко В.И., Фарбер Б.Я., Иунин Ю.Л. // ЖЭТФ. 1987. Т. 93. С. 1304.
  22. 22. Iunin Yu.L., Nikitenko V.I. // Scr. Mater. 2001. V. 45. P. 1239. https://doi.org/10.1016/S1359-6462 (01)01156-3
  23. 23. Yonenaga I. // Mater. Trans. 2005. V. 46. P. 1979. https://doi.org/10.2320/matertrans.46.1979
  24. 24. Claeys C., Simoen E. Extended Defects in Germanium. Springer Series in Materials Science. V. 118. Berlin; Heidelberg: Springer, 2009. 207 p. https://doi.org/10.1007/978-3-540-85614-6_1
  25. 25. Инденбом В.Л. // Кристаллография. 1958. Т. 3. С. 197.
  26. 26. Combs J.A., Yip S. // Phys. Rev. B. 1983. V. 28. P. 6873. https://doi.org/10.1103/PhysRevB.28.6873
  27. 27. Flach S., Kladko K. // Phys. Rev. E. 1996. V. 54. P. 2912. https://doi.org/10.1103/PhysRevE.54.2912
  28. 28. Carpio A., Bonilla L.L. // Phys. Rev. Lett. 2001. V. 86. P. 6034. https://doi.org/10.1103/PhysRevLett.86.6034
  29. 29. Усатенко О.В., Горбач А.В., Ковалев А.С. // ФТТ. 2001. Т. 43. С. 1202.
  30. 30. Петухов Б.В. // ФТТ. 2025. Т. 67. С. 382. https://doi.org/10.61011/FTT.202502.59996.261
  31. 31. Dirr N., Yip N.K. // Interfaces and Free Boundaries. 2006. V. 8. P. 79.
  32. 32. Yakushevich L.V., Krasnobaeva L.A. // Biophys. Rev. 2021. V. 13. P. 315. https://doi.org/10.1007/s12551-021-00801-0
  33. 33. Martinez-Pedrero F., Tierno P., Johansen T.H., Straube A.V. // Sci. Rep. 2016. V. 6. P. 19932. https://doi.org/10.1038/srep19932
  34. 34. Нацик В.Д., Смирнов С.Н. // Кристаллография. 2009. Т. 54. С. 1034.
  35. 35. Браун О.М., Кившарь Ю.С. Модель Френкеля-Конторовой. Концепции, методы и приложения. М: ФИЗМАТЛИТ, 2008. 322 с.
  36. 36. Kratohvil J., Indenbom V.L. // Czech. J. Phys. 1963. V. 13. P. 814. https://doi.org/10.1007/BF01688006
  37. 37. Kladko K., Mitkov I., Bishop A.R. // Phys. Rev. Lett. 2000. V. 84. P. 4505. https://doi.org/10.1103/PhysRevLett.84.4505
  38. 38. Mitkov I., Kladko K., Bishop A.R. // Phys. Rev. E. 2000. V. 61. P. 1106. https://doi.org/10.1103/PhysRevE.61.1106
  39. 39. deCastro M., Hofer E., Munuzuri M. // Phys. Rev. E. 1999. V. 59. P. 5962. https://doi.org/10.1103/PhysRevE.59.5962
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library