RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

IRRADIATION CREEP IN METALS: MULTISCALE MODELLING

PII
S0023476125040157-1
DOI
10.31857/S0023476125040157
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
662-669
Abstract
The irradiation creep in metals with cubic crystal lattices at low stresses (less than the yield strength) was studied within the framework of multiscale modelling. The modelling combines theoretical (dislocation theory of crystal plasticity, diffusion theory, anisotropic theory of elasticity, chemical kinetics) and computational (molecular statics, molecular dynamics, object kinetic Monte Carlo method) methods. The values of the rate and modulus of irradiation creep were determined in metals with bcc (Fe, V) and fcc (Cu) crystal lattices containing rectilinear dislocations with Burgers vectors 1/2 , (bcc) and 1/2 (fcc), uniformly distributed over possible families of their slip systems. The obtained calculated and theoretical values of the rate and modulus of irradiation creep are in good agreement with the results of reactor experiments.
Keywords
Date of publication
26.03.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Indenbom V.L. // Elastic strain fields and dislocation mobility / Eds. Indenbom V.L., Lothe J. Amsterdam: Elsevier, 1992. P. 1. https://doi.org/10.1016/B978-0-444-88773-3.50007-8
  2. 2. Indenbom V.L., Chernov V.M. // Elastic strain fields and dislocation mobility / Eds. Indenbom V.L., Lothe J. Amsterdam: Elsevier, 1992. P. 517. https://doi.org/10.1016/B978-0-444-88773-3.50016-9
  3. 3. Indenbom V.L., Saralidze Z.K. // Elastic strain fields and dislocation mobility / Eds. Indenbom V.L., Lothe J. Amsterdam: Elsevier, 1992. P. 571. https://doi.org/10.1016/B978-0-444-88773-3.50017-0
  4. 4. Indenbom V.L., Saralidze Z.K. // Elastic strain fields and dislocation mobility / Eds. Indenbom V.L., Lothe J. Amsterdam: Elsevier, 1992. P. 699. https://doi.org/10.1016/B978-0-444-88773-3.50019-4
  5. 5. Инденбом В.Л., Могилевский М.А., Орлов А.Н., Розенберг В.М. // Прикладная механика и техническая физика. 1965. Т. 1. C. 160. https://www.sibran.ru/upload/iblock/e77/e77cace19bc69828f3929ee54b687266.pdf
  6. 6. Инденбом В.Л. // Письма в ЖЭТФ. 1970. Т. 12 (11). С. 526. https://jetpletters.ru/ps/709/article_10970.pdf
  7. 7. Орлов А.Н., Инденбом В.Л. // Физика металлов и металловедение. 1989. Т. 67 (3). С. 421.
  8. 8. Malerba L., Caturla M.J., Gaganidze E. et al. // Nucl. Mater. Energy. 2021. V. 29. 101051. https://doi.org/10.1016/j.nme.2021.101051
  9. 9. Horstemeyer M.F. // Practical Aspects of Computational Chemistry / Eds. Leszczynski J., Shukla M. Dordrecht: Springer, 2009. P. 87. https://doi.org/10.1007/978-90-481-2687-3_4
  10. 10. Панин В.Е., Лихачёв В.А., Гриняев Ю.В. Структурные уровни деформации твердых тел. Новосибирск: Наука, 1985. 254 с.
  11. 11. Панин В.Е., Гриняев Ю.В., Псахье С.Г. // Физическая мезомеханика. 2004. Т. 7. Спец. выпуск. Ч. 1. С. I-25. https://elibrary.ru/item.asp?id=10365838
  12. 12. Псахье С.Г. // Вестн. РАН. 2013. Т. 83 (5). C. 398. https://doi.org/10.7868/S0869587313050174
  13. 13. Odette G.R., Wirth B.D., Bacon D.J., Ghoniem N.M. // MRS Bulletin. 2001. V. 26. P. 176. https://doi.org/10.1557/mrs2001.39
  14. 14. Odette G.R., Wirth B.D. // Handbook of Materials Modeling / Ed. Yip S. Dordrecht: Springer, 2005. P. 999. https://doi.org/10.1007/978-1-4020-3286-8_50
  15. 15. De la Rubia T.D., Zbib H.M., Khraishi T.A. et al. // Nature. 2000. V. 406 (6798). P. 871. https://doi.org/10.1038/35022544
  16. 16. Сивак А.Б., Романов В.А., Чернов В.М. // Кристаллография. 2010. Т. 55 (1). С. 102. https://elibrary.ru/item.asp?id=13044310
  17. 17. Сивак А.Б., Сивак П.А., Романов В.А., Чернов В.М. // Перспективные материалы. 2015. Вып. 1. С. 31. https://elibrary.ru/item.asp?id=22830177
  18. 18. Сивак А.Б., Демидов Д.Н., Сивак П.А. // ВАНТ. Сер. Материаловедение и новые материалы. 2021. Т. 3 (109). С. 30. https://elibrary.ru/item.asp?id=48157482
  19. 19. Саралидзе З.К. // ФТТ. 1978. Т. 20 (9). С. 2716.
  20. 20. Саралидзе З.К. // Атомная энергия. 1978. Т. 45 (1). С. 41. https://elib.biblioatom.ru/text/atomnaya-energiya_t45-1_1978/p41/
  21. 21. Dederichs P.H., Schroeder K. // Phys. Rev. B. 1978. V. 17. P. 2524. https://doi.org/10.1103/PhysRevB.17.2524
  22. 22. Borodin V.A., Ryazanov A.I. // J. Nucl. Mater. 1994. V. 210. P. 258. https://doi.org/10.1016/0022-3115 (94)90180-5
  23. 23. Косевич А.М. Основы механики кристаллической решетки. М.: Наука, 1972. 280 с.
  24. 24. Чернов В.М. // Перспективные материалы. 2018. Вып. 5. С. 23. https://doi.org/10.30791/1028-978X-2018-5-23-40
  25. 25. Norgett M.J., Robinson M.T., Torrens I.M. // Nucl. Eng. Des. 1975. V. 33. P. 50. https://doi.org/10.1016/0029-5493 (75)90035-7
  26. 26. Sivak A.B., Chernov V.M., Dubasova N.A., Romanov V.A. // J. Nucl. Mater. 2007. V. 367-370. P. 316. https://doi.org/10.1016/j.jnucmat.2007.03.134
  27. 27. Романов В.А., Сивак А.Б., Сивак П.А., Чернов В.М. // ВАНТ. Сер. Термоядерный синтез. 2012. Т. 35 (2). С. 60. https://doi.org/10.21517/0202-3822-2012-35-2-60-80
  28. 28. Романов В.А., Сивак А.Б., Чернов В.М. // ВАНТ. Сер. Материаловедение и новые материалы. 2006. Т. 1 (66). С. 129. https://www.elibrary.ru/item.asp?id=22614316
  29. 29. Mishin Y., Mehl M.J., Papaconstantopoulos D.A. et al. // Phys. Rev. B. 2001. V. 63. 224106. https://doi.org/10.1103/PhysRevB.63.224106
  30. 30. Сивак А.Б., Демидов Д.Н., Зольников К.П. и др. // ВАНТ. Сер. Материаловедение и новые материалы. 2019. Т. 4 (100). С. 25. https://elibrary.ru/item.asp?id=44630371
  31. 31. Демидов Д.Н., Сивак А.Б. // ВАНТ. Сер. Термоядерный синтез. 2025. Т. 48 (2).
  32. 32. Osetsky Yu.N., Bacon D.J., Singh B.N. // J. Nucl. Mater. 2002. V. 307-311. P. 866. https://doi.org/10.1016/S0022-3115 (02)01001-2
  33. 33. Ackland G.J., Tichy G., Vitek V., Finnis M.W. // Philos. Mag. A. 1987. V. 56. P. 735. https://doi.org/10.1080/01418618708204485
  34. 34. Сивак А.Б., Романов В.А., Демидов Д.Н. и др. // ВАНТ. Сер. Материаловедение и новые материалы. 2019. Т. 4 (100). С. 5. https://elibrary.ru/item.asp?id=44630370
  35. 35. Сивак А.Б., Демидов Д.Н., Сивак П.А. // ВАНТ. Сер. Термоядерный синтез. 2021. Т. 44 (1). С. 106. https://doi.org/10.21517/0202-3822-2021-44-1-106-118
  36. 36. Pokrovsky A.S., Fabritsiev S.A., Barabash V.R. et al. // Plasma Dev. Operat. 1999. V. 7. P. 313. https://doi.org/10.1080/10519999908224475
  37. 37. Katoh Y., Kohyama A., Gelles D.S. // J. Nucl. Mater. 1995. V. 225. Р. 154. https://doi.org/10.1016/0022-3115 (94)00669-5
  38. 38. Gelles D.S. // J. Nucl. Mater. 1995. V. 225. Р. 163. https://doi.org/10.1016/0022-3115 (95)00053-4
  39. 39. Gelles D.S., Stubbins J.F. // J. Nucl. Mater. 1994. V. 212-215. P. 778. https://doi.org/10.1016/0022-3115 (94)90162-7
  40. 40. Ohnuki S., Gelles D.S., Loomis B.A. et al. // J. Nucl. Mater. 1991. V. 179-181. Р. 775. https://doi.org/10.1016/0022-3115 (91)90203-J
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library